Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation

被引:154
作者
Hmidi, Taoufik [1 ]
Keraani, Sahbi [1 ]
Rousset, Frederic [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
Boussinesq system; Riesz transforms; Besov spaces; Paradifferential calculus; EQUATIONS;
D O I
10.1016/j.jde.2010.07.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a fractional diffusion Boussinesq model which couples a Navier-Stokes type equation with fractional diffusion for the velocity and a transport equation for the temperature. We establish global well-posedness results with rough initial data. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2147 / 2174
页数:28
相关论文
共 22 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]   On the global well-posedness of the critical quasi-geostrophic equation [J].
Abidi, Hammadi ;
Hmidi, Taoufik .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) :167-185
[3]  
[Anonymous], 2004, Dyn. Partial Differ. Equ., DOI DOI 10.4310/DPDE.2004.V1.N4.A2
[4]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[5]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[6]   Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq Equations [J].
Brenier, Yann .
JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (05) :547-570
[7]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[8]  
Chemin J. -Y., 1998, Perfect Incompressible Fluids
[9]   A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (03) :821-838
[10]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528