Controllable droplet generation at a microfluidic T-junction using AC electric field

被引:20
作者
Teo, Adrian J. T. [1 ]
Yan, Minghong [2 ]
Dong, Jing [3 ]
Xi, Heng-Dong [3 ]
Fu, Yusheng [2 ]
Tan, Say Hwa [1 ]
Nguyen, Nam-Trung [1 ]
机构
[1] Griffith Univ, Queensland Micro & Nanotechnol Ctr, 170 Kessels Rd, Nathan, Qld 4111, Australia
[2] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Sichuan, Peoples R China
[3] Northwestern Polytech Univ, Sch Aeronaut, 127 West Youyi Rd, Xian, Shaanxi, Peoples R China
基金
澳大利亚研究理事会;
关键词
AC electric field; Droplet generation; T-junction; Droplet-based microfluidics; STEADY;
D O I
10.1007/s10404-020-2327-6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigated the influence of an alternate current (AC) electric field on droplet generation in a T-junction device. We used sodium chloride solution with various conductivities to adjust the response time of the fluidic system. At constant flow rates of both continuous and dispersed phases, the critical parameters for the droplet formation process are the magnitude, the frequency of the applied voltage and the conductivity of the dispersed phase. The response of the droplet formation process to AC excitation is characterised by the relative area of the formed droplet. The relative response time of the fluidic system to the applied AC voltage is characterised by the relative response time that is proportional to the ratio of the AC frequency to the conductivity of the dispersed phase. An accurate prediction of the breakdown voltage for the walls also proved robustness of our model. Furthermore, experiments were repeated with 0.5 g/L and 1 g/L xanthan gum solutions as non-Newtonian fluids. The results reveal the negligible influence of viscoelasticity on the droplet formation process. On-demand size controllable generation of non-Newtonian droplets is subsequently demonstrated following the same trend of the Newtonian counterparts.
引用
收藏
页数:9
相关论文
共 32 条
[1]   DNA sequence analysis with droplet-based microfluidics [J].
Abate, Adam R. ;
Hung, Tony ;
Sperling, Ralph A. ;
Mary, Pascaline ;
Rotem, Assaf ;
Agresti, Jeremy J. ;
Weiner, Michael A. ;
Weitz, David A. .
LAB ON A CHIP, 2013, 13 (24) :4864-4869
[2]   Viscosity of aqueous solutions of sodium chloride [J].
Aleksandrov, A. A. ;
Dzhuraeva, E. V. ;
Utenkov, V. F. .
HIGH TEMPERATURE, 2012, 50 (03) :354-358
[3]   Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity [J].
Baret, Jean-Christophe ;
Miller, Oliver J. ;
Taly, Valerie ;
Ryckelynck, Michael ;
El-Harrak, Abdeslam ;
Frenz, Lucas ;
Rick, Christian ;
Samuels, Michael L. ;
Hutchison, J. Brian ;
Agresti, Jeremy J. ;
Link, Darren R. ;
Weitz, David A. ;
Griffiths, Andrew D. .
LAB ON A CHIP, 2009, 9 (13) :1850-1858
[4]   Breakup length of AC electrified jets in a microfluidic flow-focusing junction [J].
Castro-Hernandez, Elena ;
Garcia-Sanchez, Pablo ;
Tan, Say Hwa ;
Ganan-Calvo, Alfonso M. ;
Baret, Jean-Christophe ;
Ramos, Antonio .
MICROFLUIDICS AND NANOFLUIDICS, 2015, 19 (04) :787-794
[5]   Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes [J].
Chaudhuri, Joydip ;
Timung, Seim ;
Dandamudi, Chola Bhargava ;
Mandal, Tapas Kumar ;
Bandyopadhyay, Dipankar .
ELECTROPHORESIS, 2017, 38 (02) :278-286
[6]   Automated droplet measurement (ADM): an enhanced video processing software for rapid droplet measurements [J].
Chong, Zhuang Zhi ;
Tor, Shu Beng ;
Ganan-Calvo, Alfonso M. ;
Chong, Zhuang Jie ;
Loh, Ngiap Hiang ;
Nam-Trung Nguyen ;
Tan, Say Hwa .
MICROFLUIDICS AND NANOFLUIDICS, 2016, 20 (04)
[7]   Microfluidic methods for generating continuous droplet streams [J].
Christopher, G. F. ;
Anna, S. L. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (19) :R319-R336
[8]   Pressure-driven filling of liquid metal in closed-end microchannels [J].
Ganan-Calvo, Alfonso M. ;
Guo, Wei ;
Xi, Heng-Dong ;
Teo, Adrian J. T. ;
Nam-Trung Nguyen ;
Tan, Say Hwa .
PHYSICAL REVIEW E, 2018, 98 (03)
[9]  
Garstecki P, 2006, LAB CHIP, V6, P693
[10]   Electrowetting-enhanced microfluidic device for drop generation [J].
Gu, Hao ;
Malloggi, Florent ;
Vanapalli, Siva A. ;
Mugele, Frieder .
APPLIED PHYSICS LETTERS, 2008, 93 (18)