Enhanced Thermal Stability of Low-Temperature Processed Carbon-Based Perovskite Solar Cells by a Combined Antisolvent/Polymer Deposition Method

被引:4
|
作者
Aung, Soe Ko Ko [1 ,2 ]
Vijayan, Anuja [2 ]
Boschloo, Gerrit [2 ]
Seetawan, Tosawat [1 ]
机构
[1] Sakon Nakhon Rajabhat Univ, Res & Dev Inst, Ctr Excellence Alternat Energy, Dept Phys,Fac Sci & Technol,Opt Res Lab, Sakon Nakhon 47000, Thailand
[2] Uppsala Univ, Dept Chem Angstrom, Lab Phys Chem, SE-75120 Uppsala, Sweden
关键词
carbon electrodes; lead halide perovskites; poly(3-hexylthiophene); poly(triarylamine); HOLE-CONDUCTOR-FREE; TRANSPORT; EFFICIENT; PHOTOLUMINESCENCE; PASSIVATION; PERFORMANCE; LENGTHS; FILMS;
D O I
10.1002/ente.202200177
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Low-temperature processed carbon-based perovskite solar cells have received great attention due to low-cost, high stability, and simple preparation processes that can be employed in large-scale manufacturing. Carbon paste is deposited by techniques such as doctor blading or screen printing. However, solvents from this paste can damage the perovskite or underlying layers resulting in poor performance of solar cells. Furthermore, carbon is not an ideal hole-selective contact. To overcome these issues, the antisolvent treatment is combined with the deposition of a polymeric hole conductor. Specifically, poly(3-hexylthiophene) (P3HT), added into the chlorobenzene antisolvent, improves perovskite morphology and reduces interfacial carrier recombination. As a result, the power conversion efficiency (PCE) of solar cells with the device structure SnO2/MAPbI(3)/P3HT/carbon increases to 12.16% from 10.6% of pristine devices without P3HT, using pure antisolvent. For poly(triarylamine) hole conductor in the same method, PCE improves only slightly to 11.1%. After 260 h of thermal stress at 82 degrees C, the P3HT-additive devices improve PCE up to 13.2% in air and maintain 91% of their initial efficiency over 800 h.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Low-Temperature, Scalable, Reactive Deposition of Tin Oxide for Perovskite Solar Cells
    Blackburn, Dominic
    Routledge, Thomas
    O'Kane, Mary
    Cassella, Elena J.
    Game, Onkar S.
    Catley, Thomas E.
    Wood, Christopher J.
    McArdle, Trevor
    Lidzey, David George
    SOLAR RRL, 2022, 6 (08)
  • [42] Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions
    Zhang, Meng
    Lyu, Miaoqiang
    Yun, Jung-Ho
    Noori, Mahir
    Zhou, Xiaojing
    Cooling, Nathan A.
    Wang, Qiong
    Yu, Hua
    Dastoor, Paul C.
    Wang, Lianzhou
    NANO RESEARCH, 2016, 9 (06) : 1570 - 1577
  • [43] Low-Temperature Processed Brookite Interfacial Modification for Perovskite Solar Cells with Improved Performance
    Yang, Jiandong
    Wang, Jun
    Yang, Wenshu
    Zhu, Ying
    Feng, Shuang
    Su, Pengyu
    Fu, Wuyou
    NANOMATERIALS, 2022, 12 (20)
  • [44] Low-Temperature Processed TiOxElectron Transport Layer for Efficient Planar Perovskite Solar Cells
    Shahiduzzaman, Md.
    Kuwahara, Daiki
    Nakano, Masahiro
    Karakawa, Makoto
    Takahashi, Kohshin
    Nunzi, Jean-Michel
    Taima, Tetsuya
    NANOMATERIALS, 2020, 10 (09) : 1 - 12
  • [45] Slow photocharging and reduced hysteresis in low-temperature processed planar perovskite solar cells
    Vaenas, Naoum
    Konios, Dimitrios
    Stergiopoulos, Thomas
    Kymakis, Emmanuel
    RSC ADVANCES, 2015, 5 (130) : 107771 - 107776
  • [46] Shallow and Deep Trap State Passivation for Low-Temperature Processed Perovskite Solar Cells
    Azmi, Randi
    Nurrosyid, Naufan
    Lee, Sang-Hak
    Al Mubarok, Muhibullah
    Lee, Wooseop
    Hwang, Sunbin
    Yin, Wenping
    Tae Kyu Ahn
    Kim, Tae-Wook
    Ryu, Du Yeol
    Do, Young Rag
    Jang, Sung-Yeon
    ACS ENERGY LETTERS, 2020, 5 (05) : 1396 - 1403
  • [47] Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility
    You, Jingbi
    Hong, Ziruo
    Yang, Yang
    Chen, Qi
    Cai, Min
    Song, Tze-Bin
    Chen, Chun-Chao
    Lu, Shirong
    Liu, Yongsheng
    Zhou, Huanping
    Yang, Yang
    ACS NANO, 2014, 8 (02) : 1674 - 1680
  • [48] Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions
    Meng Zhang
    Miaoqiang Lyu
    Jung-Ho Yun
    Mahir Noori
    Xiaojing Zhou
    Nathan A. Cooling
    Qiong Wang
    Hua Yu
    Paul C. Dastoor
    Lianzhou Wang
    Nano Research, 2016, 9 : 1570 - 1577
  • [49] Binder-solvent effects on low temperature-processed carbon-based, hole-transport layer free perovskite solar cells
    Kartikay, Purnendu
    Yella, Aswani
    Mallick, Sudhanshu
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 256 (256)
  • [50] All low-temperature processed carbon-based planar heterojunction perovskite solar cells employing Mg-doped rutile TiO2 as electron transport layer
    Liu, Xingyue
    Liu, Zhiyong
    Sun, Bo
    Tan, Xianhua
    Ye, Haibo
    Tu, Yuxue
    Shi, Tielin
    Tang, Zirong
    Liao, Guanglan
    ELECTROCHIMICA ACTA, 2018, 283 : 1115 - 1124