Enhanced Thermal Stability of Low-Temperature Processed Carbon-Based Perovskite Solar Cells by a Combined Antisolvent/Polymer Deposition Method

被引:4
作者
Aung, Soe Ko Ko [1 ,2 ]
Vijayan, Anuja [2 ]
Boschloo, Gerrit [2 ]
Seetawan, Tosawat [1 ]
机构
[1] Sakon Nakhon Rajabhat Univ, Res & Dev Inst, Ctr Excellence Alternat Energy, Dept Phys,Fac Sci & Technol,Opt Res Lab, Sakon Nakhon 47000, Thailand
[2] Uppsala Univ, Dept Chem Angstrom, Lab Phys Chem, SE-75120 Uppsala, Sweden
关键词
carbon electrodes; lead halide perovskites; poly(3-hexylthiophene); poly(triarylamine); HOLE-CONDUCTOR-FREE; TRANSPORT; EFFICIENT; PHOTOLUMINESCENCE; PASSIVATION; PERFORMANCE; LENGTHS; FILMS;
D O I
10.1002/ente.202200177
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Low-temperature processed carbon-based perovskite solar cells have received great attention due to low-cost, high stability, and simple preparation processes that can be employed in large-scale manufacturing. Carbon paste is deposited by techniques such as doctor blading or screen printing. However, solvents from this paste can damage the perovskite or underlying layers resulting in poor performance of solar cells. Furthermore, carbon is not an ideal hole-selective contact. To overcome these issues, the antisolvent treatment is combined with the deposition of a polymeric hole conductor. Specifically, poly(3-hexylthiophene) (P3HT), added into the chlorobenzene antisolvent, improves perovskite morphology and reduces interfacial carrier recombination. As a result, the power conversion efficiency (PCE) of solar cells with the device structure SnO2/MAPbI(3)/P3HT/carbon increases to 12.16% from 10.6% of pristine devices without P3HT, using pure antisolvent. For poly(triarylamine) hole conductor in the same method, PCE improves only slightly to 11.1%. After 260 h of thermal stress at 82 degrees C, the P3HT-additive devices improve PCE up to 13.2% in air and maintain 91% of their initial efficiency over 800 h.
引用
收藏
页数:9
相关论文
共 59 条
  • [11] Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells
    Fagiolari, Lucia
    Bella, Federico
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (12) : 3437 - 3472
  • [12] Carbon Materials in Perovskite Solar Cells: Prospects and Future Challenges
    Ferguson, Victoria
    Silva, S. Ravi P.
    Zhang, Wei
    [J]. ENERGY & ENVIRONMENTAL MATERIALS, 2019, 2 (02) : 107 - 118
  • [13] The role of carbon-based materials in enhancing the stability of perovskite solar cells
    Hadadian, Mahbube
    Smatt, Jan-Henrik
    Correa-Baena, Juan-Pablo
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (05) : 1377 - 1407
  • [14] Perovskite/Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] Bulk Heterojunction for High-Efficient Carbon-Based Large-Area Solar Cells by Gradient Engineering
    Han, Jianhua
    Yin, Xuewen
    Zhou, Yu
    Nan, Hui
    Gu, Youchen
    Tai, Meiqian
    Li, Jianbao
    Lin, Hong
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (49) : 42328 - 42334
  • [15] Carbon-based perovskite solar cells: From single-junction to modules
    He, Rui
    Huang, Xiaozhou
    Chee, Mason
    Hao, Feng
    Dong, Pei
    [J]. CARBON ENERGY, 2019, 1 (01) : 109 - 123
  • [16] Improved charge carrier transport in ultrathin poly(3-hexylthiophene) films via solution aggregation
    Janasz, Lukasz
    Chlebosz, Dorota
    Gradzka, Marzena
    Zajaczkowski, Wojciech
    Marszalek, Tomasz
    Muellen, Klaus
    Ulanski, Jacek
    Kiersnowski, Adam
    Pisula, Wojciech
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (48) : 11488 - 11498
  • [17] Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells
    Jeong, Jaeki
    Kim, Minjin
    Seo, Jongdeuk
    Lu, Haizhou
    Ahlawat, Paramvir
    Mishra, Aditya
    Yang, Yingguo
    Hope, Michael A.
    Eickemeyer, Felix T.
    Kim, Maengsuk
    Yoon, Yung Jin
    Choi, In Woo
    Darwich, Barbara Primera
    Choi, Seung Ju
    Jo, Yimhyun
    Lee, Jun Hee
    Walker, Bright
    Zakeeruddin, Shaik M.
    Emsley, Lyndon
    Rothlisberger, Ursula
    Hagfeldt, Anders
    Kim, Dong Suk
    Graetzel, Michael
    Kim, Jin Young
    [J]. NATURE, 2021, 592 (7854) : 381 - +
  • [18] Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%
    Jeong, Min Ju
    Yeom, Kyung Mun
    Kim, Se Jin
    Jung, Eui Hyuk
    Noh, Jun Hong
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) : 2419 - 2428
  • [19] In-situ fabrication of P3HT passivating layer with hole extraction ability for enhanced performance of perovskite solar cell
    Jiang, Maocheng
    Yuan, Jifeng
    Cao, Guozhong
    Tian, Jianjun
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 402
  • [20] Highly efficient and stable carbon-based perovskite solar cells with the polymer hole transport layer
    Jin, Junjun
    Yang, Man
    Deng, Wenqiu
    Xin, Juan
    Tai, Qidong
    Qian, Jingwen
    Dong, Binghai
    Li, Wenlu
    Wang, Jianying
    Li, Jinhua
    [J]. SOLAR ENERGY, 2021, 220 : 491 - 497