Integral formula for the characteristic Cauchy problem on a curved background

被引:4
|
作者
Joudioux, Jeremie [1 ]
机构
[1] Univ Brest, Lab Math Brest, CNRS UMR 6205, CS 93837, F-29238 Brest 3, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2011年 / 95卷 / 02期
关键词
Characteristic Cauchy problem; Dirac equation; Compacted spin formalism; Integral representations of solutions; GENERAL-RELATIVITY; NULL HYPERSURFACE; SPACE-TIMES; HIGHER SPIN; FIELDS; EQUATIONS;
D O I
10.1016/j.matpur.2010.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a local integral formula, valid on general curved spacetimes, for the characteristic Cauchy problem for the Dirac equation with arbitrary spin. The derivation of the formula is based on the work of Friedlander (1975) [6] for the wave equation. A parametrix for the square of the Dirac operator, which is a spinor wave equation, is built using Friedlander's construction. Deriving the representation formula obtained in function of the characteristic data for this particular wave equation gives an integral formula for the Goursat problem. The results obtained by Penrose (1963) in the flat case in [21] are recovered directly. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:151 / 193
页数:43
相关论文
共 50 条
  • [21] The Cauchy Problem for a Nonlinear WaveEquation
    Artemeva, M. V.
    Korpusov, M. O.
    DIFFERENTIAL EQUATIONS, 2024, 60 (10) : 1369 - 1382
  • [22] The Cauchy and Goursat analytical problem
    Hamada, Yusaku
    Okaji, Takashi
    Takei, Yoshitsugu
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2012, 48 (01) : 139 - 181
  • [23] THE CAUCHY PROBLEM IN GENERAL RELATIVITY
    Ringstrom, Hans
    ACTA PHYSICA POLONICA B, 2013, 44 (12): : 2621 - 2641
  • [24] Hilbert transforms and the Cauchy integral in euclidean space
    Axelsson, Andreas
    Kou, Kit Ian
    Qian, Tao
    STUDIA MATHEMATICA, 2009, 193 (02) : 161 - 187
  • [25] Frenkel electron and a spinning body in a curved background
    Ramirez, Walberto Guzman
    Deriglazov, Alexei A.
    Pupasov-Maksimov, Andrey M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03):
  • [26] ON GENERAL FRACTIONAL ABSTRACT CAUCHY PROBLEM
    Mei, Zhan-Dong
    Peng, Ji-Gen
    Zhang, Yang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) : 2753 - 2772
  • [27] On the Cauchy problem for gravity water waves
    Alazard, T.
    Burq, N.
    Zuily, C.
    INVENTIONES MATHEMATICAE, 2014, 198 (01) : 71 - 163
  • [28] Cauchy problem for an isentropic magnetogasdynamic system
    Fu, Xiaoyu
    Sharma, V. D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 437 - 443
  • [29] Approximation of Semilinear Fractional Cauchy Problem
    Liu, Ru
    Li, Miao
    Piskarev, Sergey
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2015, 15 (02) : 203 - 212
  • [30] Fractional Cauchy problem on random snowflakes
    Capitanelli, Raffaela
    D'Ovidio, Mirko
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 2123 - 2140