Backpropagation Neural Network for Analysis and Classification of Fluorescence Spectroscopy of Squamous Cell Carcinoma in Animal Model

被引:0
作者
Nogueira, Joao Marcelo [1 ]
Garcia, Marlon Rodrigues [1 ]
Requena, Michelle Barreto [1 ]
Moriyama, Lilian Tan [1 ]
Pratavieira, Sebastiao [1 ]
Magalhaes, Daniel Varela [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Inst Phys, Sao Carlos, Brazil
来源
2021 SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE (SBFOTON IOPC) | 2021年
基金
巴西圣保罗研究基金会;
关键词
Fluorescence; Spectroscopy; Artificial neural network; Squamous cell carcinoma; Animal model; Skin cancer; SKIN-CANCER; RAMAN-SPECTROSCOPY; DIAGNOSIS;
D O I
10.1109/SBFOTONIOPC50774.2021.9461949
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The present study aims to evaluate the performance of a backpropagation neural network (BPNN) using the principal component analysis (PCA) of fluorescence spectra for discrimination between normal skin and skin tumor on mice. The fluorescence spectra were acquired from nude mice with induced squamous cell carcinoma (SCC). The artificial neural network (ANN) used in this study is a classical multiplayer feed-forward type with a back-propagation algorithm. The classification results show this technique as promising for healthy and unhealthy tissue classification. During the validation, the network classified 100% of the training set spectra and 90% of the test set.
引用
收藏
页数:4
相关论文
共 19 条
  • [1] Fluorescence spectroscopy of biological tissues - A review
    Bachmann, Luciano
    Zezell, Denise Maria
    Ribeiro, Adriana da Costa
    Gomes, Laercio
    Ito, Amando Siuiti
    [J]. APPLIED SPECTROSCOPY REVIEWS, 2006, 41 (06) : 575 - 590
  • [2] Borisova E., 2012, INT J BIOAUTOMATION, V16, P53
  • [3] BORISOVA E., 2014, SPIE NEWSROOM
  • [4] Fluorescence spectroscopy in the visible range for the assessment of UVB radiation effects in hairless mice skin
    Campos, Carolina de Paula
    D'Almeida, Camila de Paula
    Nogueira, Marcelo Saito
    Moriyama, Lilian Tan
    Pratavieira, Sebastiao
    Kurachi, Cristina
    [J]. PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2017, 20 : 21 - 27
  • [5] Daniel D Arul Pon, 2016, J Med Signals Sens, V6, P172
  • [6] The skin cancer classification using deep convolutional neural network
    Dorj, Ulzii-Orshikh
    Lee, Keun-Kwang
    Choi, Jae-Young
    Lee, Malrey
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 9909 - 9924
  • [7] Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue
    Gniadecka, M
    Philipsen, PA
    Sigurdsson, S
    Wessel, S
    Nielsen, OF
    Christensen, DH
    Hercogova, J
    Rossen, K
    Thomsen, HK
    Gniadecki, R
    Hansen, LK
    Wulf, HC
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2004, 122 (02) : 443 - 449
  • [8] Haykin S. S, 2009, NEURAL NETWORKS LEAR, V10
  • [9] Growth inhibition of an established A431 xenograft tumor by a full-length anti-EGFR antibody following gene delivery by AAV
    Ho, D. T.
    Wykoff-Clary, S.
    Gross, C. S.
    Schneider, D.
    Jin, F.
    Kretschmer, P. J.
    Hermiston, T. W.
    [J]. CANCER GENE THERAPY, 2009, 16 (02) : 184 - 194
  • [10] Ismael MR, 2018, INT CONF ELECTRO INF, P252, DOI 10.1109/EIT.2018.8500308