Volume preservation by Runge-Kutta methods

被引:3
作者
Bader, Philipp [1 ]
McLaren, David I. [1 ]
Quispel, G. R. W. [1 ]
Webb, Marcus [2 ]
机构
[1] La Trobe Univ, Dept Math & Stat, Bundoora, Vic 3086, Australia
[2] Univ Cambridge, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
Volume preservation; Runge-Kutta method; Measure preservation; Kahan's method; DYNAMICAL-SYSTEMS; GEOMETRIC INTEGRATION;
D O I
10.1016/j.apnum.2016.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is a classical theorem of Liouville that Hamiltonian systems preserve volume in phase space. Any symplectic Runge-Kutta method will respect this property for such systems, but it has been shown by Iserles, Quispel and Tse and independently by Chartier and Murua that no B-Series method can be volume preserving for all volume preserving vector fields. In this paper, we show that despite this result, symplectic Runge-Kutta methods can be volume preserving for a much larger class of vector fields than Hamiltonian systems, and discuss how some Runge-Kutta methods can preserve a modified measure exactly. (C) 2016 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:123 / 137
页数:15
相关论文
共 50 条
[21]   Dissipativity of Runge-Kutta methods for Volterra functional differential equations [J].
Wen, Liping ;
Yu, Yuexin ;
Li, Shoufu .
APPLIED NUMERICAL MATHEMATICS, 2011, 61 (03) :368-381
[22]   Implicit Runge-Kutta methods based on Lobatto quadrature formula [J].
Liu, HY ;
Sun, G .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (01) :77-88
[23]   Construction of Symplectic Runge-Kutta Methods for Stochastic Hamiltonian Systems [J].
Wang, Peng ;
Hong, Jialin ;
Xu, Dongsheng .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (01) :237-270
[24]   Regularity properties of Runge-Kutta methods for delay differential equations [J].
Jackiewicz, Z ;
Vermiglio, R ;
Zennaro, M .
APPLIED NUMERICAL MATHEMATICS, 1997, 24 (2-3) :265-278
[25]   COMPLETE ALGEBRAIC CHARACTERIZATION OF A-STABLE RUNGE-KUTTA METHODS [J].
SCHERER, R ;
WENDLER, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :540-551
[26]   Runge-Kutta projection methods with low dispersion and dissipation errors [J].
Calvo, M. ;
Laburta, M. P. ;
Montijano, J. I. ;
Randez, L. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (01) :231-251
[27]   Partitioned Runge-Kutta methods in Lie-group setting [J].
Engo, K .
BIT NUMERICAL MATHEMATICS, 2003, 43 (01) :21-39
[28]   Regularity properties of Runge-Kutta methods for ordinary differential equations [J].
Jackiewicz, Z ;
Vermiglio, R ;
Zennaro, M .
APPLIED NUMERICAL MATHEMATICS, 1996, 22 (1-3) :251-262
[29]   Runge-Kutta methods adapted to manifolds and based on rigid frames [J].
Owren, B ;
Marthinsen, A .
BIT, 1999, 39 (01) :116-142
[30]   Runge-Kutta Methods Adapted to Manifolds and Based on Rigid Frames [J].
B. Owren ;
A. Marthinsen .
BIT Numerical Mathematics, 1999, 39 :116-142