Volume preservation by Runge-Kutta methods

被引:3
|
作者
Bader, Philipp [1 ]
McLaren, David I. [1 ]
Quispel, G. R. W. [1 ]
Webb, Marcus [2 ]
机构
[1] La Trobe Univ, Dept Math & Stat, Bundoora, Vic 3086, Australia
[2] Univ Cambridge, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
Volume preservation; Runge-Kutta method; Measure preservation; Kahan's method; DYNAMICAL-SYSTEMS; GEOMETRIC INTEGRATION;
D O I
10.1016/j.apnum.2016.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is a classical theorem of Liouville that Hamiltonian systems preserve volume in phase space. Any symplectic Runge-Kutta method will respect this property for such systems, but it has been shown by Iserles, Quispel and Tse and independently by Chartier and Murua that no B-Series method can be volume preserving for all volume preserving vector fields. In this paper, we show that despite this result, symplectic Runge-Kutta methods can be volume preserving for a much larger class of vector fields than Hamiltonian systems, and discuss how some Runge-Kutta methods can preserve a modified measure exactly. (C) 2016 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:123 / 137
页数:15
相关论文
共 50 条
  • [1] ON THE PRESERVATION OF SECOND INTEGRALS BY RUNGE-KUTTA METHODS
    Tapley, Benjamin K.
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2023, 10 (02): : 304 - 322
  • [2] On the Preservation of Lyapunov Functions by Runge-Kutta Methods
    Calvo, M.
    Laburta, M. P.
    Montijano, J. I.
    Randez, L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 735 - 738
  • [3] On the preservation of invariants by explicit Runge-Kutta methods
    Calvo, M.
    Hernandez-Abreu, D.
    Montijano, J. I.
    Randez, L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 868 - 885
  • [4] Structure preservation of exponentially fitted Runge-Kutta methods
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 421 - 434
  • [5] Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
    Horvath, Z
    APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 309 - 326
  • [6] THE RUNGE-KUTTA METHODS
    THOMAS, B
    BYTE, 1986, 11 (04): : 191 - &
  • [7] LINEARLY-IMPLICIT RUNGE-KUTTA METHODS BASED ON IMPLICIT RUNGE-KUTTA METHODS
    BRUDER, J
    APPLIED NUMERICAL MATHEMATICS, 1993, 13 (1-3) : 33 - 40
  • [8] REDUCIBLE RUNGE-KUTTA METHODS
    COOPER, GJ
    BIT, 1985, 25 (04): : 675 - 680
  • [9] Multiplicative runge-kutta methods
    Aniszewska, Dorota
    NONLINEAR DYNAMICS, 2007, 50 (1-2) : 265 - 272
  • [10] Runge-Kutta methods and renormalization
    Brouder, C
    EUROPEAN PHYSICAL JOURNAL C, 2000, 12 (03): : 521 - 534