Weakly Supervised Deep Learning for Aortic Valve Finite Element Mesh Generation from 3D CT Images

被引:6
作者
Pak, Daniel H. [1 ]
Liu, Minliang [2 ]
Ahn, Shawn S. [1 ]
Caballero, Andres [2 ]
Onofrey, John A. [3 ]
Liang, Liang [4 ]
Sun, Wei [2 ]
Duncan, James S. [1 ,3 ]
机构
[1] Yale Univ, Biomed Engn, New Haven, CT 06520 USA
[2] Georgia Inst Technol, Biomed Engn, Atlanta, GA 30332 USA
[3] Yale Sch Med, Radiol & Biomed Imaging, New Haven, CT USA
[4] Univ Miami, Comp Sci, Miami, FL USA
来源
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2021 | 2021年 / 12729卷
关键词
Weakly supervised deep learning; Shape deformation; Aortic valve modeling; SEGMENTATION;
D O I
10.1007/978-3-030-78191-0_49
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Finite Element Analysis (FEA) is useful for simulating Transcather Aortic Valve Replacement (TAVR), but has a significant bottleneck at input mesh generation. Existing automated methods for imaging-based valve modeling often make heavy assumptions about imaging characteristics and/or output mesh topology, limiting their adaptability. In this work, we propose a deep learning-based deformation strategy for producing aortic valve FE meshes from noisy 3D CT scans of TAVR patients. In particular, we propose a novel image analysis problem formulation that allows for training of mesh prediction models using segmentation labels (i.e. weak supervision), and identify a unique set of losses that improve model performance within this framework. Our method can handle images with large amounts of calcification and low contrast, and is compatible with predicting both surface and volumetric meshes. The predicted meshes have good surface and correspondence accuracy, and produce reasonable FEA results.
引用
收藏
页码:637 / 648
页数:12
相关论文
共 25 条
[11]  
Kingma DP, 2014, ADV NEUR IN, V27
[12]   TeTrIS: Template Transformer Networks for Image Segmentation With Shape Priors [J].
Lee, Matthew Chung Hai ;
Petersen, Kersten ;
Pawlowski, Nick ;
Glocker, Ben ;
Schaap, Michiel .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (11) :2596-2606
[13]   Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images [J].
Liang, Liang ;
Kong, Fanwei ;
Martin, Caitlin ;
Thuy Pham ;
Wang, Qian ;
Duncan, James ;
Sun, Wei .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2017, 33 (05)
[14]  
Loriot S., 2020, CGAL USER REFERENCE, V5.0
[15]  
Pak DH, 2020, I S BIOMED IMAGING, P1738, DOI [10.1109/isbi45749.2020.9098378, 10.1109/ISBI45749.2020.9098378]
[16]   Medially constrained deformable modeling for segmentation of branching medial structures: Application to aortic valve segmentation and morphometry [J].
Pouch, Alison M. ;
Tian, Sijie ;
Takebe, Manabu ;
Yuan, Jiefu ;
Gorman, Robert, Jr. ;
Cheung, Albert T. ;
Wang, Hongzhi ;
Jackson, Benjamin M. ;
Gorman, Joseph H., III ;
Gorman, Robert C. ;
Yushkevich, Paul A. .
MEDICAL IMAGE ANALYSIS, 2015, 26 (01) :217-231
[17]  
Ravi N, 2020, Arxiv, DOI arXiv:2007.08501
[18]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[19]   Nonrigid registration using free-form deformations: Application to breast MR images [J].
Rueckert, D ;
Sonoda, LI ;
Hayes, C ;
Hill, DLG ;
Leach, MO ;
Hawkes, DJ .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (08) :712-721
[20]  
Sandkuhler R., 2018, arXiv