Weakly Supervised Deep Learning for Aortic Valve Finite Element Mesh Generation from 3D CT Images

被引:6
作者
Pak, Daniel H. [1 ]
Liu, Minliang [2 ]
Ahn, Shawn S. [1 ]
Caballero, Andres [2 ]
Onofrey, John A. [3 ]
Liang, Liang [4 ]
Sun, Wei [2 ]
Duncan, James S. [1 ,3 ]
机构
[1] Yale Univ, Biomed Engn, New Haven, CT 06520 USA
[2] Georgia Inst Technol, Biomed Engn, Atlanta, GA 30332 USA
[3] Yale Sch Med, Radiol & Biomed Imaging, New Haven, CT USA
[4] Univ Miami, Comp Sci, Miami, FL USA
来源
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2021 | 2021年 / 12729卷
关键词
Weakly supervised deep learning; Shape deformation; Aortic valve modeling; SEGMENTATION;
D O I
10.1007/978-3-030-78191-0_49
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Finite Element Analysis (FEA) is useful for simulating Transcather Aortic Valve Replacement (TAVR), but has a significant bottleneck at input mesh generation. Existing automated methods for imaging-based valve modeling often make heavy assumptions about imaging characteristics and/or output mesh topology, limiting their adaptability. In this work, we propose a deep learning-based deformation strategy for producing aortic valve FE meshes from noisy 3D CT scans of TAVR patients. In particular, we propose a novel image analysis problem formulation that allows for training of mesh prediction models using segmentation labels (i.e. weak supervision), and identify a unique set of losses that improve model performance within this framework. Our method can handle images with large amounts of calcification and low contrast, and is compatible with predicting both surface and volumetric meshes. The predicted meshes have good surface and correspondence accuracy, and produce reasonable FEA results.
引用
收藏
页码:637 / 648
页数:12
相关论文
共 25 条
[1]  
[Anonymous], 2006, Insight J
[2]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[3]  
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
[4]   A new point matching algorithm for non-rigid registration [J].
Chui, HL ;
Rangarajan, A .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2003, 89 (2-3) :114-141
[5]   First-in-Human Experience With Patient-Specific Computer Simulation of TAVR in Bicuspid Aortic Valve Morphology [J].
Dowling, Cameron ;
Firoozi, Sami ;
Brecker, Stephen J. .
JACC-CARDIOVASCULAR INTERVENTIONS, 2020, 13 (02) :184-192
[6]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[7]   Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing [J].
Ghesu, Florin C. ;
Krubasik, Edward ;
Georgescu, Bogdan ;
Singh, Vivek ;
Zheng, Yefeng ;
Hornegger, Joachim ;
Comaniciu, Dorin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1217-1228
[8]   Mesh R-CNN [J].
Gkioxari, Georgia ;
Malik, Jitendra ;
Johnson, Justin .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9784-9794
[9]   Patient-Specific Modeling and Quantification of the Aortic and Mitral Valves From 4-D Cardiac CT and TEE [J].
Ionasec, Razvan Ioan ;
Voigt, Ingmar ;
Georgescu, Bogdan ;
Wang, Yang ;
Houle, Helene ;
Vega-Higuera, Fernando ;
Navab, Nassir ;
Comaniciu, Dorin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (09) :1636-1651
[10]  
Jacobson Alec, 2018, libigl: A simple C++ geometry processing library