eeglib: A Python']Python module for EEG feature extraction

被引:18
作者
Cabanero-Gomez, Luis [1 ]
Hervas, Ramon [1 ]
Gonzalez, Ivan [1 ]
Rodriguez-Benitez, Luis [1 ]
机构
[1] Univ Castilla La Mancha, Dept Informat Syst & Technol, Ciudad Real 13071, Spain
关键词
EEG; Biosignals; Signal analysis; !text type='Python']Python[!/text; TIME-SERIES; COMPLEXITY; SIGNALS;
D O I
10.1016/j.softx.2021.100745
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Electroencephalography (EEG) signals analysis is non-trivial, thus tools for helping in this task are crucial. One typical step in many studies is feature extraction, however, there are not many tools focused on that aspect. In this paper, eeglib: a Python library for EEG feature extraction is presented. It includes the most popular algorithms when working with EEG and can be easily combined with popular Python libraries. This paper also presents a simple workflow for creating features dataset which allows a high degree of customization and that is suitable for both experts and newcomers. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页数:5
相关论文
共 27 条
[1]  
[Anonymous], BANDPOWER EEG SIGNAL
[2]   PyEEG: An Open Source Python']Python Module for EEG/MEG Feature Extraction [J].
Bao, Forrest Sheng ;
Liu, Xin ;
Zhang, Christina .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
[3]  
Benesty J, 2009, SPRINGER TOP SIGN PR, V2, P37, DOI 10.1007/978-3-642-00296-0_5
[4]  
Bravo J, 2019, J AMBIENT INTELL HUM
[5]  
Cabanero L., 2019, Ucaml, P70, DOI [10.3390/proceedings2019031070, DOI 10.3390/PROCEEDINGS2019031070]
[6]   Characterisation of mobile-device tasks by their associated cognitive load through EEG data processing [J].
Cabanero, Luis ;
Hervas, Ramon ;
Gonzalez, Ivan ;
Fontecha, Jesus ;
Mondejar, Tania ;
Bravo, Jose .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 113 :380-390
[7]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[8]   AN ALGORITHM FOR MACHINE CALCULATION OF COMPLEX FOURIER SERIES [J].
COOLEY, JW ;
TUKEY, JW .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :297-&
[9]   EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [J].
Delorme, A ;
Makeig, S .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 134 (01) :9-21
[10]   MEG and EEG data analysis with MNE-Python']Python [J].
Gramfort, Alexandre ;
Luessi, Martin ;
Larson, Eric ;
Engemann, Denis A. ;
Strohmeier, Daniel ;
Brodbeck, Christian ;
Goj, Roman ;
Jas, Mainak ;
Brooks, Teon ;
Parkkonen, Lauri ;
Haemaelaeinen, Matti .
FRONTIERS IN NEUROSCIENCE, 2013, 7