Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer

被引:21
作者
Cheng, Yuan [1 ]
Luo, Yahong [2 ]
Hu, Yue [1 ]
Zhang, Zhaohe [2 ]
Wang, Xingling [2 ]
Yu, Qing [2 ]
Liu, Guanyu [2 ]
Cui, Enuo [3 ]
Yu, Tao [2 ]
Jiang, Xiran [1 ]
机构
[1] China Med Univ, Sch Fundamental Sci, Dept Biomed Engn, Shenyang 110122, Peoples R China
[2] China Med Univ, Liaoning Canc Hosp & Inst, Canc Hosp, Dept Radiol, Shenyang 110042, Peoples R China
[3] Shenyang Univ, Sch Comp Sci & Engn, Shenyang 110044, Peoples R China
基金
中国国家自然科学基金;
关键词
LARC; nCRT; MRI; Radiomics; Nomogram; PATHOLOGICAL COMPLETE RESPONSE; TUMOR-REGRESSION; TEXTURE ANALYSIS; CHEMORADIATION; SELECTION; FEATURES;
D O I
10.1007/s00261-021-03219-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To investigate the value of multiparametric MRI-based radiomics on predicting response to nCRT in patients with rectal cancer. Methods This study enrolled 193 patients with pathologically confirmed LARC who received nCRT treatment between Apr. 2014 and Jun. 2018. All patients underwent baseline T1-weighted (T1W), T2-weighted (T2W) and T2-weighted fatsuppression (T2FS) MRI scans before neoadjuvant chemoradiotherapy. Radiomics features were extracted and selected from the MRI data to establish the radiomics signature. Important clinical predictors were identified by Mann-Whitney U test and Chi-square test. The nomogram integrating the radiomics signature and important clinical predictors was constructed using multivariate logistic regression. Prediction capabilities of each model were assessed with receiver operating characteristic (ROC) curve analysis. Performance of the nomogram was evaluated by its calibration and potential clinical usefulness. Results For the prediction of good response (GR) and pathologic complete response (pCR), the developed radiomics signature comprising 10 and 7 features, respectively, were significantly associated with the therapeutic response to nCRT. The nomogram incorporating the radiomics signature and important clinical predictors (CEA and CA19-9 for predicting GR; CEA, posttreatment length and posttreatment thickness for predicting pCR) achieved favorable prediction efficacy, with AUCs of 0.918 (95% confidence interval [CI]: 0.867-0.971, Sen =0.972, Spe = 0.828) and 0.944 (95% CI: 0.891-0.997, Sen =0.943, Spe =0.828) in the training and validation cohort for predicting GR, respectively; with AUCs of 0.959 (95% CI: 0.927-0.991, Sen =1.000, Spe = 0.833) and 0.912 (95% CI: 0.843-0.982, Sen =1.000, Spe = 0.815) in the training and validation cohort for predicting pCR, respectively. Decision curve analysis confirmed potential clinical usefulness of our nomogram. Conclusions This study demonstrated that the MRI-based radiomics nomogram is predictive of response to nCRT and can be considered as a promising tool for facilitating treatment decision-making for patients with LARC. [GRAPHICS] .
引用
收藏
页码:5072 / 5085
页数:14
相关论文
共 40 条
[1]   From Handcrafted to Deep-Learning-Based Cancer Radiomics Challenges and opportunities [J].
Afshar, Parnian ;
Mohammadi, Arash ;
Plataniotis, Konstantinos N. ;
Oikonomou, Anastasia ;
Benali, Habib .
IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (04) :132-160
[2]   MRI Radiomics for Prediction of Tumor Response and Downstaging in Rectal Cancer Patients after Preoperative Chemoradiation [J].
Chen, Haihui ;
Shi, Liting ;
Nguyen, Ky Nam Bao ;
Monjazeb, Arta M. ;
Matsukuma, Karen E. ;
Loehfelm, Thomas W. ;
Huang, Haixin ;
Qiu, Jianfeng ;
Rong, Yi .
ADVANCES IN RADIATION ONCOLOGY, 2020, 5 (06) :1286-1295
[3]   Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer [J].
Cui, Yanfen ;
Yang, Xiaotang ;
Shi, Zhongqiang ;
Yang, Zhao ;
Du, Xiaosong ;
Zhao, Zhikai ;
Cheng, Xintao .
EUROPEAN RADIOLOGY, 2019, 29 (03) :1211-1220
[4]   Texture Analysis as Imaging Biomarker of Tumoral Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients Studied with 3-T Magnetic Resonance [J].
De Cecco, Carlo N. ;
Ganeshan, Balaji ;
Ciolina, Maria ;
Rengo, Marco ;
Meinel, Felix G. ;
Musio, Daniela ;
De Felice, Francesca ;
Raffetto, Nicola ;
Tombolini, Vincenzo ;
Laghi, Andrea .
INVESTIGATIVE RADIOLOGY, 2015, 50 (04) :239-245
[5]   MRI-based clinical-radiomics model predicts tumor response before treatment in locally advanced rectal cancer [J].
Delli Pizzi, Andrea ;
Chiarelli, Antonio Maria ;
Chiacchiaretta, Piero ;
d'Annibale, Martina ;
Croce, Pierpaolo ;
Rosa, Consuelo ;
Mastrodicasa, Domenico ;
Trebeschi, Stefano ;
Lambregts, Doenja Marina Johanna ;
Caposiena, Daniele ;
Serafini, Francesco Lorenzo ;
Basilico, Raffaella ;
Cocco, Giulio ;
Di Sebastiano, Pierluigi ;
Cinalli, Sebastiano ;
Ferretti, Antonio ;
Wise, Richard Geoffrey ;
Genovesi, Domenico ;
Beets-Tan, Regina G. H. ;
Caulo, Massimo .
SCIENTIFIC REPORTS, 2021, 11 (01)
[6]   Magnetic resonance imaging evaluation in neoadjuvant therapy of locally advanced rectal cancer: a systematic review [J].
Fusco, Roberta ;
Petrillo, Mario ;
Granata, Vincenza ;
Filice, Salvatore ;
Sansone, Mario ;
Catalano, Orlando ;
Petrillo, Antonella .
RADIOLOGY AND ONCOLOGY, 2017, 51 (03) :252-262
[7]   Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features [J].
Giannini, V. ;
Mazzetti, S. ;
Bertotto, I. ;
Chiarenza, C. ;
Cauda, S. ;
Delmastro, E. ;
Bracco, C. ;
Di Dia, A. ;
Leone, F. ;
Medico, E. ;
Pisacane, A. ;
Ribero, D. ;
Stasi, M. ;
Regge, D. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (04) :878-888
[8]   MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy [J].
Horvat, Natally ;
Veeraraghavan, Harini ;
Khan, Monika ;
Blazic, Ivana ;
Zheng, Junting ;
Capanu, Marinela ;
Sala, Evis ;
Garcia-Aguilar, Julio ;
Gollub, Marc J. ;
Petkovska, Iva .
RADIOLOGY, 2018, 287 (03) :833-843
[9]   Artificial intelligence in radiation oncology [J].
Huynh, Elizabeth ;
Hosny, Ahmed ;
Guthier, Christian ;
Bitterman, Danielle S. ;
Petit, Steven E. ;
Haas-Kogan, Daphne A. ;
Kann, Benjamin ;
Aert, Hugo J. W. L. ;
Mak, Raymond H. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2020, 17 (12) :771-781
[10]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762