THE 7-REGULAR AND 13-REGULAR PARTITION FUNCTIONS MODULO 3

被引:7
作者
Boll, Eric [1 ]
Penniston, David [1 ]
机构
[1] Univ Wisconsin, Dept Math, Oshkosh, WI 54901 USA
关键词
partitions; congruences; modular forms; DISTINCT PARTS; DIVISIBILITY;
D O I
10.1017/S0004972715001434
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let b(l)(n) denote the number of l-regular partitions of n. In this paper we establish a formula for b(13)(3n + 1) modulo 3 and use this to find exact criteria for the 3-divisibility of b13(3n + 1) and b(13)(3n). We also give analogous criteria for b(7)(3n) and b(7)(3n + 2).
引用
收藏
页码:410 / 419
页数:10
相关论文
共 16 条
[1]   The arithmetic of partitions into distinct parts [J].
Ahlgren, S ;
Lovejoy, J .
MATHEMATIKA, 2001, 48 (95-96) :203-211
[2]   Congruence properties for the partition function [J].
Ahlgren, S ;
Ono, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :12882-12884
[3]   Distribution of the partition function module composite integers M [J].
Ahlgren, S .
MATHEMATISCHE ANNALEN, 2000, 318 (04) :795-803
[4]   TWISTS OF NEW FORMS AND PSEUDO-EIGENVALUES OF W-OPERATORS [J].
ATKIN, AOL ;
LI, WCW .
INVENTIONES MATHEMATICAE, 1978, 48 (03) :221-243
[5]  
Calkin N., 2008, Integers, V8, pA60
[6]   a""-Divisibility of a""-regular partition functions [J].
Dandurand, Brian ;
Penniston, David .
RAMANUJAN JOURNAL, 2009, 19 (01) :63-70
[7]   Congruences for l-regular partition functions modulo 3 [J].
Furcy, David ;
Penniston, David .
RAMANUJAN JOURNAL, 2012, 27 (01) :101-108
[8]  
Gordon B., 1997, RAMANUJAN J, V1, P25, DOI DOI 10.1023/A:1009711020492
[9]  
Kani E., 2012, ANN SCI MATH QUEBEC, V36, P501
[10]   Divisibility and distribution of partitions into distinct parts [J].
Lovejoy, J .
ADVANCES IN MATHEMATICS, 2001, 158 (02) :253-263