Modular Microfluidics: Current Status and Future Prospects

被引:32
作者
Lai, Xiaochen [1 ]
Yang, Mingpeng [1 ]
Wu, Hao [2 ]
Li, Dachao [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China
[2] Tianjin Univ, State Key Lab Precis Measuring Technol & Instrume, Tianjin 300072, Peoples R China
关键词
modular microfluidics; reconfiguration; reusability; on-demand deployment; rapid prototyping; organs-on-a-chip; DEVICES; SYSTEM; POLYMER; COMMERCIALIZATION; STANDARDIZATION; INTERCONNECTS; TECHNOLOGY; CHIP; LAB;
D O I
10.3390/mi13081363
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This review mainly studies the development status, limitations, and future directions of modular microfluidic systems. Microfluidic technology is an important tool platform for scientific research and plays an important role in various fields. With the continuous development of microfluidic applications, conventional monolithic microfluidic chips show more and more limitations. A modular microfluidic system is a system composed of interconnected, independent modular microfluidic chips, which are easy to use, highly customizable, and on-site deployable. In this paper, the current forms of modular microfluidic systems are classified and studied. The popular fabrication techniques for modular blocks, the major application scenarios of modular microfluidics, and the limitations of modular techniques are also discussed. Lastly, this review provides prospects for the future direction of modular microfluidic technologies.
引用
收藏
页数:22
相关论文
共 119 条
[1]   Facile Room-Temperature Anion Exchange Reactions of Inorganic Perovskite Quantum Dots Enabled by a Modular Microfluidic Platform [J].
Abdel-Latif, Kameel ;
Epps, Robert W. ;
Kerr, Corwin B. ;
Papa, Christopher M. ;
Castellano, Felix N. ;
Abolhasani, Milad .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (23)
[2]   A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces [J].
Abhyankar, Vinay V. ;
Wu, Meiye ;
Koh, Chung-Yan ;
Hatch, Anson V. .
PLOS ONE, 2016, 11 (05)
[3]   Modular Microfluidic Paper-Based Devices for Multi-Modal Cascade Catalysis [J].
Andersen, Nalin, I ;
Artyushkova, Kateryna ;
Matanovic, Ivana ;
Chavez, Madelaine Seow ;
Hickey, David P. ;
Abdelloui, Sofiene ;
Minteer, Shelley D. ;
Atanassov, Plamen .
CHEMELECTROCHEM, 2019, 6 (09) :2448-2455
[4]   First steps towards interlocking modular microfluidic cooling substrates (i-MμCS) for future silicon tracking detectors in High Energy Physics (HEP) [J].
Angeletti, Massimo ;
Renaud, Philippe ;
Gargiulo, Corrado .
MICROELECTRONIC ENGINEERING, 2022, 255
[5]   Magnetic connectors for microfluidic applications [J].
Atencia, Javier ;
Cooksey, Gregory A. ;
Jahn, Andreas ;
Zook, Justin M. ;
Vreeland, Wyatt N. ;
Locascio, Laurie E. .
LAB ON A CHIP, 2010, 10 (02) :246-249
[6]   3D-Printed Microfluidics [J].
Au, Anthony K. ;
Huynh, Wilson ;
Horowitz, Lisa F. ;
Folch, Albert .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :3862-3881
[7]   Versatile reconfigurable glass capillary microfluidic devices with Lego® inspired blocks for drop generation and micromixing [J].
Bandulasena, Monalie, V ;
Vladisavljevic, Goran T. ;
Benyahia, Brahim .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 542 :23-32
[8]   Polymer microfabrication technologies for microfluidic systems [J].
Becker, Holger ;
Gaertner, Claudia .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 390 (01) :89-111
[9]   lTemperature Sensing in Modular Microfluidic Architectures [J].
Bhargava, Krisna C. ;
Thompson, Bryant ;
Tembhekar, Anoop ;
Malmstadt, Noah .
MICROMACHINES, 2016, 7 (01)
[10]   Discrete elements for 3D microfluidics [J].
Bhargava, Krisna C. ;
Thompson, Bryant ;
Malmstadt, Noah .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (42) :15013-15018