Dislocation avalanche mechanism in slowly compressed high entropy alloy nanopillars

被引:32
作者
Hu, Yang [1 ,2 ]
Shu, Li [3 ]
Yang, Qun [1 ,2 ]
Guo, Wei [4 ]
Liaw, Peter K. [5 ]
Dahmen, Karin A. [3 ]
Zuo, Jian-Min [1 ,2 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Fredrick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA
[5] Univ Tennessee, Dept Mat Sci & Engn, 1508 Middle Dr, Knoxville, TN 37996 USA
来源
COMMUNICATIONS PHYSICS | 2018年 / 1卷
基金
美国国家科学基金会;
关键词
CONSTANT INTERMITTENT FLOW; SINGLE-CRYSTALS; STRAIN BURSTS; DEFORMATION; PLASTICITY; STATISTICS; DYNAMICS;
D O I
10.1038/s42005-018-0062-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Crystals deform by the intermittent multiplication and slip avalanches of dislocations. While dislocation multiplication is well-understood, how the avalanches form, however, is not clear, and the lack of insight in general has contributed to "a mass of details and controversy" about crystal plasticity. Here, we follow the development of dislocation avalanches in the compressed nanopillars of a high entropy alloy, Al0.1CoCrFeNi, using direct electron imaging and precise mechanical measurements. Results show that the avalanche starts with dislocation accumulations and the formation of dislocation bands. Dislocation pileups form in front of the dislocation bands, whose giveaway trigs the avalanche, like the opening of a floodgate. The size of dislocation avalanches ranges from few to 10(2) nm in the nanopillars, with the power-law distribution similar to earthquakes. Thus, our study identifies the dislocation interaction mechanism for large crystal slips, and provides critical insights into the deformation of high entropy alloys.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Tuned Critical Avalanche Scaling in Bulk Metallic Glasses [J].
Antonaglia, James ;
Xie, Xie ;
Schwarz, Gregory ;
Wraith, Matthew ;
Qiao, Junwei ;
Zhang, Yong ;
Liaw, Peter K. ;
Uhl, Jonathan T. ;
Dahmen, Karin A. .
SCIENTIFIC REPORTS, 2014, 4
[2]   FUNDAMENTAL-ASPECTS OF LOW AMPLITUDE CYCLIC DEFORMATION IN FACE-CENTERED CUBIC-CRYSTALS [J].
BASINSKI, ZS ;
BASINSKI, SJ .
PROGRESS IN MATERIALS SCIENCE, 1992, 36 :89-148
[3]   Fundamental differences in mechanical behavior between two types of crystals at the nanoscale [J].
Brinckmann, Steffen ;
Kim, Ju-Young ;
Greer, Julia R. .
PHYSICAL REVIEW LETTERS, 2008, 100 (15)
[4]   Constant intermittent flow of dislocations: central problems in plasticity [J].
Brown, L. M. .
MATERIALS SCIENCE AND TECHNOLOGY, 2012, 28 (11) :1209-1232
[5]   Universal features of amorphous plasticity [J].
Budrikis, Zoe ;
Castellanos, David Fernandez ;
Sandfeld, Stefan ;
Zaiser, Michael ;
Zapperi, Stefano .
NATURE COMMUNICATIONS, 2017, 8
[6]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[7]   Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy, and High-Entropy Alloys [J].
Carroll, Robert ;
Lee, Chi ;
Tsai, Che-Wei ;
Yeh, Jien-Wei ;
Antonaglia, James ;
Brinkman, Braden A. W. ;
LeBlanc, Michael ;
Xie, Xie ;
Chen, Shuying ;
Liaw, Peter K. ;
Dahmen, Karin A. .
SCIENTIFIC REPORTS, 2015, 5
[8]   Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale [J].
Csikor, Ferenc F. ;
Motz, Christian ;
Weygand, Daniel ;
Zaiser, Michael ;
Zapperi, Stefano .
SCIENCE, 2007, 318 (5848) :251-254
[9]   Micromechanical Model for Deformation in Solids with Universal Predictions for Stress-Strain Curves and Slip Avalanches [J].
Dahmen, Karin A. ;
Ben-Zion, Yehuda ;
Uhl, Jonathan T. .
PHYSICAL REVIEW LETTERS, 2009, 102 (17)
[10]   Scale-free intermittent flow in crystal plasticity [J].
Dimiduk, Dennis M. ;
Woodward, Chris ;
LeSar, Richard ;
Uchic, Michael D. .
SCIENCE, 2006, 312 (5777) :1188-1190