Dark solitons for a generalized nonlinear Schrodinger equation with parabolic law and dual-power law nonlinearities

被引:125
作者
Triki, Houria [2 ]
Biswas, Anjan [1 ]
机构
[1] Delaware State Univ, Dept Math Sci, Ctr Res & Educ Opt Sci & Applicat, Dover, DE 19901 USA
[2] Badji Mokhtar Univ, Dept Phys, Fac Sci, Radiat Phys Lab, Annaba 23000, Algeria
关键词
solitons; evolution equation; 1-SOLITON SOLUTION;
D O I
10.1002/mma.1414
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamics of dark solitons is studied within the framework of a generalized nonlinear Schrodinger equation. The specific cases of parabolic law and dual-power law nonlinearity are considered. The solitary wave ansatz method is used to carry out the integration. All the physical parameters in the soliton solutions are obtained as functions of the dependent model coefficients. Parametric conditions for the existence of envelope solitons are given. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:958 / 962
页数:5
相关论文
共 20 条
[1]   Hamiltonian-versus-energy diagrams in soliton theory [J].
Akhmediev, N ;
Ankiewicz, A ;
Grimshaw, R .
PHYSICAL REVIEW E, 1999, 59 (05) :6088-6096
[2]   Quasi-stationary non-Kerr law optical solitons [J].
Biswas, A .
OPTICAL FIBER TECHNOLOGY, 2003, 9 (04) :224-259
[3]  
Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons
[4]   1-soliton solution of (1+2)-dimensional nonlinear Schrodinger's equation in dual-power law media [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (38) :5941-5943
[5]   Bright and dark solitons of the generalized nonlinear Schrodinger's equation [J].
Biswas, Anjan ;
Milovic, Daniela .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) :1473-1484
[6]   1-Soliton solution of the B(m, n) equation with generalized evolution [J].
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) :3226-3229
[7]   DARK-SOLITON JITTER IN AMPLIFIED OPTICAL-TRANSMISSION SYSTEMS [J].
HAMAIDE, JP ;
EMPLIT, P ;
HAELTERMAN, M .
OPTICS LETTERS, 1991, 16 (20) :1578-1580
[8]  
Hasegawa A., 1995, Solitons in Optical Communications
[9]   Optical solitary wave solutions for the higher order nonlinear Schrodinger equation with cubic-quintic non-Kerr terms [J].
Hong, WP .
OPTICS COMMUNICATIONS, 2001, 194 (1-3) :217-223
[10]   Compacton and periodic wave solutions of the non-linear dispersive Zakharov-Kuznetsov equation [J].
Inc, Mustafa .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2007, 5 (03) :351-366