On the efficiency of intrinsic rotation generation in tokamaks

被引:46
作者
Kosuga, Y. [1 ,2 ]
Diamond, P. H. [1 ,2 ,3 ]
Guercan, Oe D. [4 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA
[3] WCI Ctr Fus Theory, Natl Fus Res Inst, Taejon 305333, South Korea
[4] Ecole Polytech, CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France
基金
新加坡国家研究基金会;
关键词
TOROIDAL-MOMENTUM-TRANSPORT; TURBULENCE; CONFINEMENT; SHEAR;
D O I
10.1063/1.3496055
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A theory of the efficiency of the plasma flow generation process is presented. A measure of the efficiency of plasma self-acceleration of mesoscale and mean flows from the heat flux is introduced by analogy with engines, using the entropy budget defined by thermal relaxation and flow generation. The efficiency is defined as the ratio of the entropy destruction rate due to flow generation to the entropy production rate due to del T relaxation (i.e., related to turbulent heat flux). The efficiencies for two different cases, i.e., for the generation of turbulent driven E x B shear flow (zonal flow) and for toroidal intrinsic rotation, are considered for a stationary state, achieved by balancing entropy production rate and destruction rate order by order in O(k(parallel to)/k(perpendicular to)), where k is the wave number. The efficiency of intrinsic toroidal rotation is derived and shown to be e(IR) similar to(Mach)(th)(2) similar to 0.01. The scaling of the efficiency of intrinsic rotation generation is also derived and shown to be rho(2)(*)(q(2)/(s) over cap (2))(R-2/L-T(2))=rho(2)(*)(L-s(2)/L-T(2)), which suggests a machine size scaling and an unfavorable plasma current scaling which enters through the shear length. (C) 2010 American Institute of Physics. [doi:10.1063/1.3496055]
引用
收藏
页数:11
相关论文
共 31 条
[1]   INFLUENCE OF SHEARED POLOIDAL ROTATION ON EDGE TURBULENCE [J].
BIGLARI, H ;
DIAMOND, PH ;
TERRY, PW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (01) :1-4
[2]   Observation of spontaneous toroidal rotation inversion in ohmically heated Tokamak plasmas [J].
Bortolon, A. ;
Duval, B. P. ;
Pochelon, A. ;
Scarabosio, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[4]   Physics of non-diffusive turbulent transport of momentum and the origins of spontaneous rotation in tokamaks [J].
Diamond, P. H. ;
McDevitt, C. J. ;
Guercan, Oe. D. ;
Hahm, T. S. ;
Wang, W. X. ;
Yoon, E. S. ;
Holod, I. ;
Lin, Z. ;
Naulin, V. ;
Singh, R. .
NUCLEAR FUSION, 2009, 49 (04)
[5]   Transport of parallel momentum by collisionless drift wave turbulence [J].
Diamond, P. H. ;
McDevitt, C. J. ;
Guercan, Oe. D. ;
Hahm, T. S. ;
Naulin, V. .
PHYSICS OF PLASMAS, 2008, 15 (01)
[6]  
Diamond P.H., 2010, MODERN PLASMA PHYS
[7]   Zonal flows in plasma - a review [J].
Diamond, PH ;
Itoh, SI ;
Itoh, K ;
Hahm, TS .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (05) :R35-R161
[8]   THEORY OF MEAN POLOIDAL FLOW GENERATION BY TURBULENCE [J].
DIAMOND, PH ;
KIM, YB .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (07) :1626-1633
[9]   SELF-REGULATING SHEAR-FLOW TURBULENCE - A PARADIGM FOR THE L TO H TRANSITION [J].
DIAMOND, PH ;
LIANG, YM ;
CARRERAS, BA ;
TERRY, PW .
PHYSICAL REVIEW LETTERS, 1994, 72 (16) :2565-2568
[10]   Turbulent fluxes and entropy production rate [J].
Garbet, X ;
Dubuit, N ;
Asp, E ;
Sarazin, Y ;
Bourdelle, C ;
Ghendrih, P ;
Hoang, GT .
PHYSICS OF PLASMAS, 2005, 12 (08) :1-13