Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO -: art. no. 075205

被引:1786
作者
Zhang, SB [1 ]
Wei, SH [1 ]
Zunger, A [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
D O I
10.1103/PhysRevB.63.075205
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
ZnO typifies a class of materials that can be doped via native defects in only one way: either n type or p type. We explain this asymmetry in ZnO via a study of its intrinsic defect physics, including Zn-O, Zn-i, V-O, O-i, and V-Zn and n-type impurity dopants, Al and F. We find that ZnO is n type at Zn-rich conditions. This is because (i) the Zn interstitial, Zn-i, is a shallow, donor, supplying electrons; (ii) its formation enthalpy is low for both Zn-rich and O-rich conditions, so this defect is abundant; and (iii) the native defects that could compensate the n-type doping effect of Zn-i (interstitial O, O-i, and Zn vacancy, V-Zn), have high formation enthalpies for Zn-rich conditions, so these "electron killers" are not abundant. We find that ZnO cannot be doped p type via native defects (O-i, V-Zn) despite the fact that they are shallow (i.e., supplying holes at room temperature). This is because at both Zn-rich and O-rich conditions, the defects that could compensate p-type doping (V-O, Zn-i, Zn-O) have low formation enthalpies so these "hole killers" form readily. Furthermore, we identify electron-hole radiative recombination at the V-O center as the source of the green luminescence. In contrast, a large structural relaxation of the same center upon double hole capture leads to slow electron-hole recombination (either radiative or nonradiative) responsible for the slow decay of photoconductivity.
引用
收藏
页数:7
相关论文
共 41 条
[1]   OPTICAL AND ELECTRICAL-PROPERTIES OF RADICAL BEAM GETTERING EPITAXY GROWN N-TYPE AND P-TYPE ZNO SINGLE-CRYSTALS [J].
BUTKHUZI, TV ;
BUREYEV, AV ;
GEORGOBIANI, AN ;
KEKELIDZE, NP ;
KHULORDAVA, TG .
JOURNAL OF CRYSTAL GROWTH, 1992, 117 (1-4) :366-369
[2]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[3]   Growth of ZnO single crystal thin films on c-plane (0 0 0 1) sapphire by plasma enhanced molecular beam epitaxy [J].
Chen, YF ;
Bagnall, DM ;
Zhu, ZQ ;
Sekiuchi, T ;
Park, KT ;
Hiraga, K ;
Yao, T ;
Koyama, S ;
Shen, MY ;
Goto, T .
JOURNAL OF CRYSTAL GROWTH, 1997, 181 (1-2) :165-169
[4]  
CHRISTENSEN NE, 1984, PHYS REV B, V30, P5753, DOI 10.1103/PhysRevB.30.5753
[5]   EFFECT OF THERMOCHEMICAL REDUCTION ON THE ELECTRICAL, OPTICAL-ABSORPTION, AND POSITRON-ANNIHILATION CHARACTERISTICS OF ZNO CRYSTALS [J].
DELACRUZ, RM ;
PAREJA, R ;
GONZALEZ, R ;
BOATNER, LA ;
CHEN, Y .
PHYSICAL REVIEW B, 1992, 45 (12) :6581-6586
[6]   COMPENSATION OF P-TYPE DOPING IN ZNSE - THE ROLE OF IMPURITY-NATIVE DEFECT COMPLEXES [J].
GARCIA, A ;
NORTHRUP, JE .
PHYSICAL REVIEW LETTERS, 1995, 74 (07) :1131-1134
[7]  
Gordon RG, 1997, AIP CONF PROC, P39, DOI 10.1063/1.52856
[8]   DEFECT STRUCTURE OF ZN-DOPED ZNO [J].
HAGEMARK, KI .
JOURNAL OF SOLID STATE CHEMISTRY, 1976, 16 (3-4) :293-299
[9]   MOMENTUM-SPACE FORMALISM FOR THE TOTAL ENERGY OF SOLIDS [J].
IHM, J ;
ZUNGER, A ;
COHEN, ML .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (21) :4409-4422
[10]   p-type electrical conduction in ZnO thin films by Ga and N codoping [J].
Joseph, M ;
Tabata, H ;
Kawai, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1999, 38 (11A) :L1205-L1207