Integrating machine learning and workflow management to support acquisition and adaptation of workflow models

被引:51
作者
Herbst, J [1 ]
Karagiannis, D [1 ]
机构
[1] Daimler Benz AG, D-89013 Ulm, Germany
来源
NINTH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS | 1998年
关键词
D O I
10.1109/DEXA.1998.707491
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current workflow management systems (WFMS) offer little aid for the acquisition of workflow models and their adaptation to changing requirements. To support these activities we propose to integrate machine learning and,workflow management. This enables an inductive approach to workflow acquisition and adaptation by processing traces of manually enacted workflows. We present a machine learning component that combines two different machine learning algorithms. In this paper we focus mainly on the first one which induces the structure of the workflow: based on the induction of hidden markov models. The second algorithm, a standard decision rule induction algorithm, induces transition conditions. The main concepts have been implemented in a prototype, which we have validated using artificial process traces. The induced workflow models can be imported by the business process management system ADONIS(1).
引用
收藏
页码:745 / 752
页数:4
相关论文
empty
未找到相关数据