Microtubule structures underlying the sarcoplasmic reticulum support peripheral coupling sites to regulate smooth muscle contractility

被引:29
|
作者
Pritchard, Harry A. T. [1 ]
Gonzales, Albert L. [2 ]
Pires, Paulo W. [1 ]
Drumm, Bernard T. [3 ]
Ko, Eun A. [3 ]
Sanders, Kenton M. [3 ]
Hennig, Grant W. [2 ]
Earley, Scott [1 ]
机构
[1] Univ Nevada, Reno Sch Med, Dept Pharmacol, Ctr Cardiovasc Res, Reno, NV 89557 USA
[2] Univ Vermont, Dept Pharmacol, Burlington, VT 05405 USA
[3] Univ Nevada, Reno Sch Med, Dept Physiol & Cell Biol, Ctr Cardiovasc Res, Reno, NV 89557 USA
关键词
ACTIVATED POTASSIUM CHANNEL; K-CA CHANNELS; SKELETAL-MUSCLE; CEREBRAL-ARTERIES; X-ROS; CALCIUM SPARKS; COLOCALIZATION ANALYSIS; RYANODINE RECEPTORS; LARGE-CONDUCTANCE; VASOMOTOR TONE;
D O I
10.1126/scisignal.aan2694
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Junctional membrane complexes facilitate excitation-contraction coupling in skeletal and cardiac muscle cells by forming subcellular invaginations that maintain close (<= 20 nm) proximity of ryanodine receptors (RyRs) on the sarcoplasmic reticulum (SR) with voltage-dependent Ca2+ channels in the plasma membrane. In fully differentiated smooth muscle cells, junctional membrane complexes occur as distributed sites of peripheral coupling. We investigated the role of the cytoskeleton in maintaining peripheral coupling and associated Ca2+ signaling networks within native smooth muscle cells of mouse and rat cerebral arteries. Using live-cell confocal and superresolution microscopy, we found that the tight interactions between the SR and the plasma membrane in these cells relied on arching microtubule structures present at the periphery of smooth muscle cells and were independent of the actin cytoskeleton. Loss of peripheral coupling associated with microtubule depolymerization altered the spatiotemporal properties of localized Ca2+ sparks generated by the release of Ca2+ through type 2 RyRs (RyR2s) on the SR and decreased the number of sites of colocalization between RyR2s and large-conductance Ca2+-activated K+ (BK) channels. The reduced BK channel activity associated with the loss of SR-plasma membrane interactions was accompanied by increased pressure-induced constriction of cerebral resistance arteries. We conclude that microtubule structures maintain peripheral coupling in contractile smooth muscle cells, which is crucial for the regulation of contractility and cerebral vascular tone.
引用
收藏
页数:11
相关论文
共 2 条
  • [1] STIM1-dependent peripheral coupling governs the contractility of vascular smooth muscle cells
    Krishnan, Vivek
    Ali, Sher
    Gonzales, Albert L.
    Thakore, Pratish
    Griffin, Caoimhin S.
    Yamasaki, Evan
    Alvarado, Michael G.
    Johnson, Martin T.
    Trebak, Mohamed
    Earley, Scott
    ELIFE, 2022, 11
  • [2] Local Ca2+ coupling between mitochondria and sarcoplasmic reticulum following depolarization in guinea pig urinary bladder smooth muscle cells
    Yamamura, Hisao
    Kawasaki, Keisuke
    Inagaki, Sou
    Suzuki, Yoshiaki
    Imaizumi, Yuji
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2018, 314 (01): : C88 - C98