Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements

被引:76
作者
Liu, Ming [1 ]
Wang, Chao [1 ]
Zhao, Chenglong [1 ,2 ,3 ]
van der Maas, Eveline
Lin, Kui [2 ,3 ]
Arszelewska, Violetta A. [1 ]
Li, Baohua [2 ,3 ]
Ganapathy, Swapna [1 ]
Wagemaker, Marnix [1 ]
机构
[1] Delft Univ Technol, Fac Sci Appl, Sect Storage Elect Energy Radiat Sci & Technol, Delft, Netherlands
[2] Tsinghua Univ, Key Lab Power Battery Res, Jinan 518055, Shandong, Peoples R China
[3] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen Geim Graphene Ctr, Jinan 518055, Shandong, Peoples R China
关键词
LITHIUM-SULFUR BATTERIES; ELECTROLYTE; TRANSPORT; NANOCOMPOSITE; INTERPHASES; STABILITY; REDOX; BULK;
D O I
10.1038/s41467-021-26190-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A key challenge for solid-state-batteries development is to design electrode-electrolyte interfaces that combine (electro)chemical and mechanical stability with facile Li-ion transport. However, while the solid-electrolyte/electrode interfacial area should be maximized to facilitate the transport of high electrical currents on the one hand, on the other hand, this area should be minimized to reduce the parasitic interfacial reactions and promote the overall cell stability. To improve these aspects simultaneously, we report the use of an interfacial inorganic coating and the study of its impact on the local Li-ion transport over the grain boundaries. Via exchange-NMR measurements, we quantify the equilibrium between the various phases present at the interface between an S-based positive electrode and an inorganic solid-electrolyte. We also demonstrate the beneficial effect of the LiI coating on the all-solid-state cell performances, which leads to efficient sulfur activation and prevention of solid-electrolyte decomposition. Finally, we report 200 cycles with a stable capacity of around 600 mAh g(-1) at 0.264 mA cm(-2) for a full lab-scale cell comprising of LiI-coated Li2S-based cathode, Li-In alloy anode and Li6PS5Cl solid electrolyte. Development of all-solid-state batteries requires stable solid electrolyte-electrode interfaces. Here, via exchange-NMR measurements, the authors investigate the positive electrode-solid electrolyte interface, revealing the impact of an inorganic coating on the Li-ion transport properties.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries [J].
Banerjee, Abhik ;
Tang, Hanmei ;
Wang, Xuefeng ;
Cheng, Ju-Hsiang ;
Han Nguyen ;
Zhang, Minghao ;
Tang, Darren H. S. ;
Wynn, Thomas A. ;
Wu, Erik A. ;
Doux, Jean-Marie ;
Wu, Tianpin ;
Ma, Lu ;
Sterbinsky, George E. ;
D'Souza, Macwin Savio ;
Ong, Shyue Ping ;
Meng, Ying Shirley .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (46) :43138-43145
[2]   Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes [J].
Cheng, Xin-Bing ;
Zhao, Chen-Zi ;
Yao, Yu-Xing ;
Liu, He ;
Zhang, Qiang .
CHEM, 2019, 5 (01) :74-96
[3]   Revealing the Impact of Space-Charge Layers on the Li-Ion Transport in All-Solid-State Batteries [J].
Cheng, Zhu ;
Liu, Ming ;
Ganapathy, Swapna ;
Li, Chao ;
Li, Zhaolong ;
Zhang, Xiaoyu ;
He, Ping ;
Zhou, Haoshen ;
Wagemaker, Marnix .
JOULE, 2020, 4 (06) :1311-1323
[4]   Space-Charge Layers in All-Solid-State Batteries; Important or Negligible? [J].
de Klerk, Niek J. J. ;
Wagemaker, Marnix .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (10) :5609-5618
[5]   Analysis of Diffusion in Solid-State Electrolytes through MD Simulations, Improvement of the Li-Ion Conductivity in β-Li3PS4 as an Example [J].
de Klerk, Niek J. J. ;
van der Maas, Eveline ;
Wagemaker, Marnix .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (07) :3230-3242
[6]   Diffusion Mechanism of Li Argyrodite Solid Electrolytes for Li-Ion Batteries and Prediction of Optimized Halogen Doping: The Effect of Li Vacancies, Halogens, and Halogen Disorder [J].
de Klerk, Niek J. J. ;
Roslon, Trek ;
Wagemaker, Marnix .
CHEMISTRY OF MATERIALS, 2016, 28 (21) :7955-7963
[7]   A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li-S batteries [J].
El-Shinawi, Hany ;
Cussen, Edmund J. ;
Corr, Serena A. .
NANOSCALE, 2019, 11 (41) :19297-19300
[8]   Fundamentals of inorganic solid-state electrolytes for batteries [J].
Famprikis, Theodosios ;
Canepa, Pieremanuele ;
Dawson, James A. ;
Islam, M. Saiful ;
Masquelier, Christian .
NATURE MATERIALS, 2019, 18 (12) :1278-1291
[9]   Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Hitz, Gregory T. ;
McOwen, Dennis W. ;
Li, Yiju ;
Xu, Shaomao ;
Wen, Yang ;
Zhang, Lei ;
Wang, Chengwei ;
Pastel, Glenn ;
Dai, Jiaqi ;
Liu, Boyang ;
Xie, Hua ;
Yao, Yonggang ;
Wachsman, Eric D. ;
Hu, Liangbing .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (07) :1568-1575
[10]   Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Dai, Jiaqi ;
Gong, Amy ;
Han, Xiaogang ;
Yao, Yonggang ;
Wang, Chengwei ;
Wang, Yibo ;
Chen, Yanan ;
Yan, Chaoyi ;
Li, Yiju ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7094-7099