Detection of individual gas molecules adsorbed on graphene

被引:7207
作者
Schedin, F.
Geim, A. K.
Morozov, S. V.
Hill, E. W.
Blake, P.
Katsnelson, M. I.
Novoselov, K. S. [1 ]
机构
[1] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[2] Russian Acad Sci, Inst Microelect Technol, Chernogolovka 142432, Russia
[3] Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
CARBON NANOTUBES; SENSORS; SHEETS;
D O I
10.1038/nmat1967
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ultimate aim of any detection method is to achieve such a level of sensitivity that individual quanta of a measured entity can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far been beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity(1-4). The fundamental reason limiting the resolution of such sensors is fluctuations due to thermal motion of charges and defects(5), which lead to intrinsic noise exceeding the sought-after signal from individual molecules, usually by many orders of magnitude. Here, we show that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface. The adsorbed molecules change the local carrier concentration in graphene one by one electron, which leads to step-like changes in resistance. The achieved sensitivity is due to the fact that graphene is an exceptionally low-noise material electronically, which makes it a promising candidate not only for chemical detectors but also for other applications where local probes sensitive to external charge, magnetic field or mechanical strain are required.
引用
收藏
页码:652 / 655
页数:4
相关论文
共 22 条
  • [1] Screening effect and impurity scattering in monolayer graphene
    Ando, Tsuneya
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (07)
  • [2] Submicron sensors of local electric field with single-electron resolution at room temperature
    Barbolina, II
    Novoselov, KS
    Morozov, SV
    Dubonos, SV
    Missous, M
    Volkov, AO
    Christian, DA
    Grigorieva, IV
    Geim, AK
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (01)
  • [3] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [4] Electromechanical resonators from graphene sheets
    Bunch, J. Scott
    van der Zande, Arend M.
    Verbridge, Scott S.
    Frank, Ian W.
    Tanenbaum, David M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. SCIENCE, 2007, 315 (5811) : 490 - 493
  • [5] Capone S, 2003, J OPTOELECTRON ADV M, V5, P1335
  • [6] Extreme oxygen sensitivity of electronic properties of carbon nanotubes
    Collins, PG
    Bradley, K
    Ishigami, M
    Zettl, A
    [J]. SCIENCE, 2000, 287 (5459) : 1801 - 1804
  • [7] Dresselhaus MS, 2002, ADV PHYS, V51, P1, DOI [10.1080/00018730110113644, 10.1080/00018738100101367]
  • [8] LOW-FREQUENCY FLUCTUATIONS IN SOLIDS - 1-F NOISE
    DUTTA, P
    HORN, PM
    [J]. REVIEWS OF MODERN PHYSICS, 1981, 53 (03) : 497 - 516
  • [9] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [10] Carrier transport in two-dimensional graphene layers
    Hwang, E. H.
    Adam, S.
    Das Sarma, S.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (18)