Spectral Stability Conditions for an Explicit Three-Level Finite-Difference Scheme for a Multidimensional Transport Equation with Perturbations

被引:2
作者
Zlotnik, A. A. [1 ]
Chetverushkin, B. N. [2 ]
机构
[1] Natl Res Univ Higher Sch Econ, Moscow 101000, Russia
[2] Keldysh Inst Appl Math, Moscow 125047, Russia
基金
俄罗斯科学基金会;
关键词
QUASI-GASDYNAMIC SYSTEM;
D O I
10.1134/S0012266121070065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study difference schemes associated with a simplified linearized multidimensional hyperbolic quasi-gasdynamic system of differential equations. It is shown that an explicit two-level vector difference scheme with flux relaxation for a second-order hyperbolic equation with variable coefficients that is a perturbation of the transport equation with a parameter multiplying the highest derivatives can be reduced to an explicit three-level difference scheme. In the case of constant coefficients, the spectral condition for the time-uniform stability of this explicit three-level difference scheme is analyzed, and both sufficient and necessary conditions for this condition to hold are derived, in particular, in the form of Courant type conditions on the ratio of temporal and spatial steps.
引用
收藏
页码:891 / 900
页数:10
相关论文
共 16 条
[1]   Hyperbolic Quasi-Gasdynamic System [J].
Chetverushkin B.N. .
Mathematical Models and Computer Simulations, 2018, 10 (5) :588-600
[2]   On some properties of multidimensional hyperbolic quasi-gasdynamic systems of equations [J].
Chetverushkin, B. N. ;
Zlotnik, A. A. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2017, 24 (03) :299-309
[3]  
Chetverushkin B. N., 2008, KINETIC SCHEMES QUAS
[4]   On a hyperbolic perturbation of a parabolic initial-boundary value problem [J].
Chetverushkin, Boris N. ;
Zlotnik, Alexander A. .
APPLIED MATHEMATICS LETTERS, 2018, 83 :116-122
[5]   Simulating Flows of Incompressible and Weakly Compressible Fluids on Multicore Hybrid Computer Systems [J].
Davydov, A. A. ;
Chetverushkin, B. N. ;
Shil'nikov, E. V. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (12) :2157-2165
[6]  
Elizarova TG, 2009, Quasi-Gas Dynamic Equations, Computational Fluid and Solid Mechanics, DOI [10.1007/978-3-642-00292-2, DOI 10.1007/978-3-642-00292-2]
[7]  
Galanin M.P., 2004, LEKTSII MOLODYKH ISS, P78
[8]  
Gantmacher FR, 2000, THEORY MATRICES, V2
[9]  
Godunov S K., 1987, Difference schemes: an introduction to the underlying theory
[10]  
Ilin A.A., 2016, 90 KELD I APPL MATH, P1