The architecture of the SARS-CoV-2 RNA genome inside virion

被引:138
作者
Cao, Changchang [1 ]
Cai, Zhaokui [1 ,2 ]
Xiao, Xia [3 ,4 ]
Rao, Jian [3 ,4 ]
Chen, Juan [1 ]
Hu, Naijing [1 ,2 ]
Yang, Minnan [5 ]
Xing, Xiaorui [5 ]
Wang, Yongle [5 ]
Li, Manman [6 ]
Zhou, Bing [7 ,8 ]
Wang, Xiangxi [5 ]
Wang, Jianwei [3 ,4 ,9 ]
Xue, Yuanchao [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Biophys, Key Lab RNA Biol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Natl Hlth Commiss, Peoples Republ China Key Lab Syst Biol Pathogens, Beijing, Peoples R China
[4] Chinese Acad Med Sci & Peking Union Med Coll, Christophe Merieux Lab, Beijing, Peoples R China
[5] Chinese Acad Sci, CAS Key Lab Infect & Immun, Inst Biophys, Beijing, Peoples R China
[6] Henan Normal Univ, Sch Life Sci, Xinxiang, Henan, Peoples R China
[7] Chinese Acad Sci, Inst Zool, State Key Lab Stem Cell & Reprod Biol, Beijing, Peoples R China
[8] Chinese Acad Sci, Inst Stem Cell & Regenerat, Beijing, Peoples R China
[9] Chinese Acad Med Sci & Peking Union Med Coll, Key Lab Resp Dis Pathogen, Beijing, Peoples R China
关键词
MOUSE HEPATITIS-VIRUS; SECONDARY STRUCTURE; FUNCTIONAL CONSERVATION; SARS; INSIGHTS; REGION;
D O I
10.1038/s41467-021-22785-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
SARS-CoV-2 carries the largest single-stranded RNA genome and is the causal pathogen of the ongoing COVID-19 pandemic. How the SARS-CoV-2 RNA genome is folded in the virion remains unknown. To fill the knowledge gap and facilitate structure-based drug development, we develop a virion RNA in situ conformation sequencing technology, named vRIC-seq, for probing viral RNA genome structure unbiasedly. Using vRIC-seq data, we reconstruct the tertiary structure of the SARS-CoV-2 genome and reveal a surprisingly "unentangled globule" conformation. We uncover many long-range duplexes and higher-order junctions, both of which are under purifying selections and contribute to the sequential package of the SARS-CoV-2 genome. Unexpectedly, the D614G and the other two accompanying mutations may remodel duplexes into more stable forms. Lastly, the structure-guided design of potent small interfering RNAs can obliterate the SARS-CoV-2 in Vero cells. Overall, our work provides a framework for studying the genome structure, function, and dynamics of emerging deadly RNA viruses. Secondary structures and long-range RNA interactions of the SARS-CoV-2 genome have been investigated by various sequencing methods. Here the authors use an RNA-RNA hybrid sequencing method to predict the secondary and tertiary structure of the SRAS-CoV-2 RNA genome in the virion.
引用
收藏
页数:14
相关论文
共 78 条
[41]   Infernal 1.1: 100-fold faster RNA homology searches [J].
Nawrocki, Eric P. ;
Eddy, Sean R. .
BIOINFORMATICS, 2013, 29 (22) :2933-2935
[42]   Functional long-range RNA-RNA interactions in positive-strand RNA viruses [J].
Nicholson, Beth L. ;
White, K. Andrew .
NATURE REVIEWS MICROBIOLOGY, 2014, 12 (07) :493-504
[43]   Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M [J].
Oostra, M ;
de Haan, CAM ;
de Groot, RJ ;
Rottier, PJM .
JOURNAL OF VIROLOGY, 2006, 80 (05) :2326-2336
[44]   Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency [J].
Patzel, V ;
Rutz, S ;
Dietrich, I ;
Köberle, C ;
Scheffold, A ;
Kaufmann, SHE .
NATURE BIOTECHNOLOGY, 2005, 23 (11) :1440-1444
[45]   ViPR: an open bioinformatics database and analysis resource for virology research [J].
Pickett, Brett E. ;
Sadat, Eva L. ;
Zhang, Yun ;
Noronha, Jyothi M. ;
Squires, R. Burke ;
Hunt, Victoria ;
Liu, Mengya ;
Kumar, Sanjeev ;
Zaremba, Sam ;
Gu, Zhiping ;
Zhou, Liwei ;
Larson, Christopher N. ;
Dietrich, Jonathan ;
Klem, Edward B. ;
Scheuermann, Richard H. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D593-D598
[46]   A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal [J].
Plant, EP ;
Pérez-Alvarado, GC ;
Jacobs, JL ;
Mukhopadhyay, B ;
Hennig, M ;
Dinman, JD .
PLOS BIOLOGY, 2005, 3 (06) :1012-1023
[47]   Spike mutation D614G alters SARS-CoV-2 fitness [J].
Plante, Jessica A. ;
Liu, Yang ;
Liu, Jianying ;
Xia, Hongjie ;
Johnson, Bryan A. ;
Lokugamage, Kumari G. ;
Zhang, Xianwen ;
Muruato, Antonio E. ;
Zou, Jing ;
Fontes-Garfias, Camila R. ;
Mirchandani, Divya ;
Scharton, Dionna ;
Bilello, John P. ;
Ku, Zhiqiang ;
An, Zhiqiang ;
Kalveram, Birte ;
Freiberg, Alexander N. ;
Menachery, Vineet D. ;
Xie, Xuping ;
Plante, Kenneth S. ;
Weaver, Scott C. ;
Shi, Pei-Yong .
NATURE, 2021, 592 (7852) :116-121
[48]   Automated 3D structure composition for large RNAs [J].
Popenda, Mariusz ;
Szachniuk, Marta ;
Antczak, Maciej ;
Purzycka, Katarzyna J. ;
Lukasiak, Piotr ;
Bartol, Natalia ;
Blazewicz, Jacek ;
Adamiak, Ryszard W. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (14) :e112
[49]   A review on current status of antiviral siRNA [J].
Qureshi, Abid ;
Tantray, Vaqar Gani ;
Kirmani, Altaf Rehman ;
Ahangar, Abdul Ghani .
REVIEWS IN MEDICAL VIROLOGY, 2018, 28 (04)
[50]   RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: a first look [J].
Rangan, Ramya ;
Zheludev, Ivan N. ;
Hagey, Rachel J. ;
Pham, Edward A. ;
Wayment-Steele, Hannah K. ;
Glenn, Jeffrey S. ;
Das, Rhiju .
RNA, 2020, 26 (08) :937-959