Enhancement of the efficiency of ultra-thin CIGS/Si structure for solar cell applications

被引:38
作者
Boubakeur, M. [1 ]
Aissat, A. [1 ,3 ]
Ben Arbia, M. [2 ]
Maaref, H. [2 ]
Vilcot, J. P. [3 ]
机构
[1] Univ Blida 1, Fac Technol, Blida 09000, Algeria
[2] Univ Monastir, Fac Sci Monastir, Dept Phys, Lab Microoptoelect & Nanostruct, Ave Environm, Monastir 5019, Tunisia
[3] Univ Sci & Technol Lille 1, UMR CNRS 8520, IEMN, Ave Poincare,BP 60069, F-59652 Villeneuve Dascq, France
关键词
Materials; Ultra-thin CIGS; Thickness; Conversion efficiency; Solar cell; SIMULATION; FILM; OPTIMIZATION; CU(IN;
D O I
10.1016/j.spmi.2019.106377
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This paper describes a numerical study of ultrathin CIGS solar cell using the one-dimensional simulation program. The various properties of the absorber layer such as the band gap energy, the absorption coefficient, and the reflection coefficient are investigated. In addition, the impact of adding silicon to reduce the thickness of CIGS is also examined. We have carried out a theoretical study to show the influence of the thickness and the gallium concentration of the CIGS absorber layer on the performance of the Mo/Si/CIGS/ZnS/ZnO structure. It has been demonstrated that increasing x(Ga) and d(CIGS) affect the conversion efficiency, FF, V-oc, and J(sc). Finally, we have achieved a conversion efficiency eta = 21.08% with an optimal value of gallium content equal to 20% when the thickness of the absorber layer has been reduced to 0.75 mu m. This study allowed us to improve the performance of thin film solar cell.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Optimization and improvement of a front graded bandgap CuInGaSe2 solar cell [J].
Aissat, A. ;
Arbouz, H. ;
Vilcot, J. P. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 180 :381-385
[2]   Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2 -: art. no. 075203 [J].
Alonso, MI ;
Wakita, K ;
Pascual, J ;
Garriga, M ;
Yamamoto, N .
PHYSICAL REVIEW B, 2001, 63 (07)
[3]  
[Anonymous], INT EL DEV M IEEE WA
[4]   Analytical modeling and simulation of CIGS solar cells [J].
Benmir, A. ;
Aida, M. S. .
TERRAGREEN 13 INTERNATIONAL CONFERENCE 2013 - ADVANCEMENTS IN RENEWABLE ENERGY AND CLEAN ENVIRONMENT, 2013, 36 :618-627
[5]   Electrical properties of InAsP/Si quantum dot solar cell [J].
Benyettou, F. ;
Aissat, A. ;
Djebari, M. ;
Vilcot, J. P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (30) :19512-19517
[6]   High efficiency quadruple junction solar cells [J].
Bestam, R. ;
Aissat, A. ;
Vilcot, J. P. .
SUPERLATTICES AND MICROSTRUCTURES, 2016, 91 :22-30
[7]   CdTe solar cells with open-circuit voltage breaking the 1V barrier [J].
Burst, J. M. ;
Duenow, J. N. ;
Albin, D. S. ;
Colegrove, E. ;
Reese, M. O. ;
Aguiar, J. A. ;
Jiang, C. -S. ;
Patel, M. K. ;
Al-Jassim, M. M. ;
Kuciauskas, D. ;
Swain, S. ;
Ablekim, T. ;
Lynn, K. G. ;
Metzger, W. K. .
NATURE ENERGY, 2016, 1
[8]   Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells [J].
Contreras, MA ;
Romero, MJ ;
Noufi, R .
THIN SOLID FILMS, 2006, 511 (51-54) :51-54
[9]   Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency [J].
Contreras, Miguel A. ;
Mansfield, Lorelle M. ;
Egaas, Brian ;
Li, Jian ;
Romero, Manuel ;
Noufi, Rommel ;
Rudiger-Voigt, Eveline ;
Mannstadt, Wolfgang .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (07) :843-850
[10]  
Degrave S, 2003, WORL CON PHOTOVOLT E, P487