Artificial intelligence, machine learning and deep learning in musculoskeletal imaging: Current applications

被引:28
作者
D'Angelo, Tommaso [1 ,2 ]
Caudo, Danilo [1 ,3 ]
Blandino, Alfredo [1 ]
Albrecht, Moritz H. [4 ]
Vogl, Thomas J. [5 ]
Gruenewald, Leon D. [4 ]
Gaeta, Michele [1 ]
Yel, Ibrahim [4 ]
Koch, Vitali [4 ]
Martin, Simon S. [4 ]
Lenga, Lukas [4 ]
Muscogiuri, Giuseppe [6 ,7 ]
Sironi, Sandro [6 ,8 ]
Mazziotti, Silvio [1 ]
Booz, Christian [4 ]
机构
[1] Univ Hosp Messina, Dept Biomed Sci & Morphol & Funct Imaging, Messina, Italy
[2] Dept Radiol & Nucl Med, Rotterdam, Netherlands
[3] IRRCS Ctr Neurolesi Bonino Pulejo, Dept Radiol, Messina, Italy
[4] Univ Hosp Frankfurt, Dept Diagnost & Intervent Radiol, Div Expt Imaging, Frankfurt, Germany
[5] Univ Hosp Frankfurt, Dept Diagnost & Intervent Radiol, Frankfurt, Germany
[6] Univ Milano Bicocca, Sch Med & Surg, Milan, Italy
[7] San Luca Hosp, Dept Radiol, IRCCS Ist Auxol Italiano, Milan, Italy
[8] ASST Papa Giovanni XXIII Hosp, Dept Radiol, Bergamo, Italy
关键词
artificial intelligence; deep learning; machine learning; musculoskeletal imaging; AUTOMATED DETECTION; THORACOLUMBAR SPINE; NEURAL-NETWORK; BONE; DIAGNOSIS; CT; CLASSIFICATION; FRACTURES; MODEL; METASTASES;
D O I
10.1002/jcu.23321
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Artificial intelligence is rapidly expanding in all technological fields. The medical field, and especially diagnostic imaging, has been showing the highest developmental potential. Artificial intelligence aims at human intelligence simulation through the management of complex problems. This review describes the technical background of artificial intelligence, machine learning, and deep learning. The first section illustrates the general potential of artificial intelligence applications in the context of request management, data acquisition, image reconstruction, archiving, and communication systems. In the second section, the prospective of dedicated tools for segmentation, lesion detection, automatic diagnosis, and classification of musculoskeletal disorders is discussed.
引用
收藏
页码:1414 / 1431
页数:18
相关论文
共 105 条
[1]   Neural networks for automatic scoring of arthritis disease activity on ultrasound images [J].
Andersen, Jakob Kristian Holm ;
Pedersen, Jannik Skyttegaard ;
Laursen, Martin Sundahl ;
Holtz, Kathrine ;
Grauslund, Jakob ;
Savarimuthu, Thiusius Rajeeth ;
Just, Soren Andreas .
RMD OPEN, 2019, 5 (01)
[2]  
[Anonymous], INTELLIGENT TOOLS PR
[3]  
[Anonymous], MULTI STAGE OSTEOLYT, DOI [10.1117/12.911169.short, DOI 10.1117/12.911169.SHORT]
[4]  
[Anonymous], LODWICK AWARD
[5]  
[Anonymous], ACR Appropriateness Criteria - Acute Onset Flank Pain-Suspicion of Stone Disease (Urolithiasis)
[6]   Segmentation of Peripheral Nerves From Magnetic Resonance Neurography: A Fully-Automatic, Deep Learning-Based Approach [J].
Balsiger, Fabian ;
Steindel, Carolin ;
Arn, Mirjam ;
Wagner, Benedikt ;
Grunder, Lorenz ;
El-Koussy, Marwan ;
Valenzuela, Waldo ;
Reyes, Mauricio ;
Scheidegger, Olivier .
FRONTIERS IN NEUROLOGY, 2018, 9
[7]   Bone-Cancer Assessment and Destruction Pattern Analysis in Long-Bone X-ray Image [J].
Bandyopadhyay, Oishila ;
Biswas, Arindam ;
Bhattacharya, Bhargab B. .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (02) :300-313
[8]   Relevance feedback for enhancing content based image retrieval and automatic prediction of semantic image features: Application to bone tumor radiographs [J].
Banerjee, Imon ;
Kurtz, Camille ;
Devorah, Alon Edward ;
Do, Bao ;
Rubin, Daniel L. ;
Beaulieu, Christopher F. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 84 :123-135
[9]   Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J].
Bien, Nicholas ;
Rajpurkar, Pranav ;
Ball, Robyn L. ;
Irvin, Jeremy ;
Park, Allison ;
Jones, Erik ;
Bereket, Michael ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Halabi, Safwan ;
Zucker, Evan ;
Fanton, Gary ;
Amanatullah, Derek F. ;
Beaulieu, Christopher F. ;
Riley, Geoffrey M. ;
Stewart, Russell J. ;
Blankenberg, Francis G. ;
Larson, David B. ;
Jones, Ricky H. ;
Langlotz, Curtis P. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[10]  
Booz C., 2022, SPECTRAL IMAGING DUA, P301