A Multichannel Deep Neural Network Model Analyzing Multiscale Functional Brain Connectome Data for Attention Deficit Hyperactivity Disorder Detection

被引:36
作者
Chen, Ming [1 ,2 ]
Li, Hailong [1 ]
Wang, Jinghua [4 ]
Dillman, Jonathan R. [3 ,4 ]
Parikh, Nehal A. [1 ,5 ]
He, Lili [1 ,5 ]
机构
[1] Univ Cincinnati, Perinatal Inst, Dept Pediat, Cincinnati, OH 45221 USA
[2] Univ Cincinnati, Dept Elect Engn & Comp Sci, Cincinnati, OH USA
[3] Cincinnati Childrens Hosp Med Ctr, Dept Radiol, 3333 Burnet Ave,MLC 7009, Cincinnati, OH 45229 USA
[4] Univ Cincinnati, Coll Med, Dept Radiol, Cincinnati, OH USA
[5] Univ Cincinnati, Coll Med, Dept Pediat, Cincinnati, OH 45221 USA
基金
美国国家卫生研究院;
关键词
MILD COGNITIVE IMPAIRMENT; LEARNING APPROACH; FMRI; PARCELLATION; DIAGNOSIS;
D O I
10.1148/ryai.2019190012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Purpose: To develop a multichannel deep neural network (mcDNN) classification model based on multiscale brain functional connectome data and demonstrate the value of this model by using attention deficit hyperactivity disorder (ADHD) detection as an example. Materials and Methods: In this retrospective case-control study, existing data from the Neuro Bureau ADHD-200 dataset consisting of 973 participants were used. Multiscale functional brain connectomes based on both anatomic and functional criteria were constructed. The mcDNN model used the multiscale brain connectome data and personal characteristic data (PCD) as joint features to detect ADHD and identify the most predictive brain connectome features for ADHD diagnosis. The mcDNN model was compared with single-channel deep neural network (scDNN) models and the classification performance was evaluated through cross-validation and hold-out validation with the metrics of accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Results: In the cross-validation, the mcDNN model using combined features (fusion of the multiscale brain connectome data and PCD) achieved the best performance in ADHD detection with an AUC of 0.82 (95% confidence interval [CI]: 0.80, 0.83) compared with scDNN models using the features of the brain connectome at each individual scale and PCD, independently. In the hold-out validation, the mcDNN model achieved an AUC of 0.74 (95% CI: 0.73, 0.76). Conclusion: An mcDNN model was developed for multiscale brain functional connectome data, and its utility for ADHD detection was demonstrated. By fusing the multiscale brain connectome data, the mcDNN model improved ADHD detection performance considerably over the use of a single scale. (c) RSNA, 2019
引用
收藏
页数:9
相关论文
共 36 条
  • [11] Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects
    Dey, Soumyabrata
    Rao, A. Ravishankar
    Shah, Mubarak
    [J]. FRONTIERS IN NEURAL CIRCUITS, 2014, 8
  • [12] A novel brain partition highlights the modular skeleton shared by structure and function
    Diez, Ibai
    Bonifazi, Paolo
    Escudero, Iaki
    Mateos, Beatriz
    Munoz, Miguel A.
    Stramaglia, Sebastiano
    Cortes, Jesus M.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [13] Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data
    Fair, Damien A.
    Nigg, Joel T.
    Iyer, Swathi
    Bathula, Deepti
    Mills, Kathryn L.
    Dosenbach, Nico U. F.
    Schlaggar, Bradley L.
    Mennes, Maarten
    Gutman, David
    Bangaru, Saroja
    Buitelaar, Jan K.
    Dickstein, Daniel P.
    Di Martino, Adriana
    Kennedy, David N.
    Kelly, Clare
    Luna, Beatriz
    Schweitzer, Julie B.
    Velanova, Katerina
    Wang, Yu-Feng
    Mostofsky, Stewart
    Castellanos, F. Xavier
    Milham, Michael P.
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2013, 6 : 1 - 31
  • [14] Frequent and Discriminative Subnetwork Mining for Mild Cognitive Impairment Classification
    Fei, Fei
    Jie, Biao
    Zhang, Daoqiang
    [J]. BRAIN CONNECTIVITY, 2014, 4 (05) : 347 - 360
  • [15] The Human Connectome Project's neuroimaging approach
    Glasser, Matthew F.
    Smith, Stephen M.
    Marcus, Daniel S.
    Andersson, Jesper L. R.
    Auerbach, Edward J.
    Behrens, Timothy E. J.
    Coalson, Timothy S.
    Harms, Michael P.
    Jenkinson, Mark
    Moeller, Steen
    Robinson, Emma C.
    Sotiropoulos, Stamatios N.
    Xu, Junqian
    Yacoub, Essa
    Ugurbil, Kamil
    Van Essen, David C.
    [J]. NATURE NEUROSCIENCE, 2016, 19 (09) : 1175 - 1187
  • [16] A multi-modal parcellation of human cerebral cortex
    Glasser, Matthew F.
    Coalson, Timothy S.
    Robinson, Emma C.
    Hacker, Carl D.
    Harwell, John
    Yacoub, Essa
    Ugurbil, Kamil
    Andersson, Jesper
    Beckmann, Christian F.
    Jenkinson, Mark
    Smith, Stephen M.
    Van Essen, David C.
    [J]. NATURE, 2016, 536 (7615) : 171 - +
  • [17] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [18] Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework
    He, Lili
    Li, Hailong
    Holland, Scott K.
    Yuan, Weihong
    Altaye, Mekibib
    Parikh, Nehal A.
    [J]. NEUROIMAGE-CLINICAL, 2018, 18 : 290 - 297
  • [19] Sex differences in the developing brain: insights from multimodal neuroimaging
    Kaczkurkin, Antonia N.
    Raznahan, Armin
    Satterthwaite, Theodore D.
    [J]. NEUROPSYCHOPHARMACOLOGY, 2019, 44 (01) : 71 - 85
  • [20] Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease
    Khazaee, Ali
    Ebrahimzadeh, Ata
    Babajani-Feremi, Abbas
    [J]. BRAIN IMAGING AND BEHAVIOR, 2016, 10 (03) : 799 - 817