Global clear sky near-surface imagery from multiple satellite daily imagery time series

被引:6
|
作者
Mikelsons, Karlis [1 ,2 ]
Wang, Menghua [1 ]
机构
[1] NOAA Natl Environm Satellite, Data & Informat Serv, Ctr Satellite Applicat & Res, E-RA3,5830 Univ Res Court, College Pk, MD 20740 USA
[2] Global Sci & Technol Inc, Greenbelt, MD 20770 USA
关键词
Remote sensing; Surface feature; True color; False color; VIIRS; Sentinel-3; OLCI; Landsat; CLOUD SHADOW; THICK CLOUD; COLOR; OCEAN; REMOVAL; RECONSTRUCTION; REGRESSION; ALGORITHM; MODIS;
D O I
10.1016/j.isprsjprs.2021.08.013
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We develop a new statistically-robust adaptive regression method (SARM) to extract clear sky true color imagery, approximating the near-surface imagery, derived from multiple satellite daily imagery time series, while avoiding artifacts due to clouds and cloud shadows. We compare the SARM-derived near-surface imagery against simpler approaches for various surface types, and perform a quantitative evaluation. Existing mapped daily imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) and NOAA-20, and the Ocean and Land Colour Instrument (OLCI) on the Sentinel-3A and Sentinel-3B satellites is used to produce global clear sky near-surface imagery over various time intervals. We provide several examples of satellite-derived clear sky near-surface imagery over various regions to show potential applications. In addition, we apply this new method to derive clear sky near-surface imagery using higher spatial resolution Landsat-8 data, and discuss characteristics and limitations of our approach. The clear sky near-surface imagery is a useful satellite-derived product, representing the human perception of Earth's near-surface features, which can be more directly interpreted and easily understood by the general public, and aids visualization and interpretation of various types of satellite derived data.
引用
收藏
页码:238 / 254
页数:17
相关论文
共 50 条
  • [1] Creating Cloud-Free Satellite Imagery from Image Time Series with Deep Learning
    Oehmcke, Stefan
    Chen, Tzu-Hsin Karen
    Prishchepov, Alexander V.
    Gieseke, Fabian
    PROCEEDINGS OF THE 9TH ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON ANALYTICS FOR BIG GEOSPATIAL DATA, BIGSPATIAL 2020, 2020,
  • [2] RECONSTRUCTION OF OCEAN SURFACE CURRENTS USING NEAR SIMULTANEOUS SATELLITE IMAGERY
    Osadchiev, Alexander
    Sedakov, Roman
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8078 - 8081
  • [3] A direct algorithm for estimating clear-sky surface longwave net radiation (SLNR) from MODIS imagery
    Cheng, Jie
    Zeng, Qi
    Shi, Jiancheng
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (05) : 1655 - 1683
  • [4] Estimating near-surface soil moisture using active microwave satellite imagery and optical sensor inputs
    Hutchinson, JMS
    TRANSACTIONS OF THE ASAE, 2003, 46 (02): : 225 - 236
  • [5] An Efficient Algorithm for Earth Surface Interpretation from Satellite Imagery
    Soimart, Lawankorn
    Ketcham, Mahasak
    ENGINEERING JOURNAL-THAILAND, 2016, 20 (05): : 215 - 228
  • [6] Near-Surface and High-Resolution Satellite Time Series for Detecting Crop Phenology
    Diao, Chunyuan
    Li, Geyang
    REMOTE SENSING, 2022, 14 (09)
  • [7] An improved technique for global daily sunshine duration estimation using satellite imagery
    Shamim, Muhammad Ali
    Remesan, Renji
    Han, Da-wei
    Ejaz, Naeem
    Elahi, Ayub
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2012, 13 (09): : 717 - 722
  • [8] An improved technique for global daily sunshine duration estimation using satellite imagery
    Muhammad Ali Shamim
    Renji Remesan
    Da-wei Han
    Naeem Ejaz
    Ayub Elahi
    Journal of Zhejiang University SCIENCE A, 2012, 13 : 717 - 722
  • [9] The SWADE model for landslide dating in time series of optical satellite imagery
    Sheng Fu
    Steven M. de Jong
    Axel Deijns
    Marten Geertsema
    Tjalling de Haas
    Landslides, 2023, 20 : 913 - 932
  • [10] The SWADE model for landslide dating in time series of optical satellite imagery
    Fu, Sheng
    de Jong, Steven M. M.
    Deijns, Axel
    Geertsema, Marten
    de Haas, Tjalling
    LANDSLIDES, 2023, 20 (05) : 913 - 932