Structure and phase transition in BaThO3: A combined neutron and synchrotron X-ray diffraction study

被引:13
作者
Murphy, Gabriel L. [1 ,2 ]
Kennedy, Brendan J. [1 ]
Zhang, Zhaoming [2 ]
Avdeev, Maxim [2 ]
Brand, Helen E. A. [3 ]
Kegler, Philip [4 ]
Alekseev, Evgeny V. [4 ,5 ]
机构
[1] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[2] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia
[3] Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia
[4] Forschungszentrum Julich, Inst Energy & Climate Res IEK 6, D-52428 Julich, Germany
[5] Rhein Westfal TH Aachen, Inst Kristallog, D-52066 Aachen, Germany
基金
澳大利亚研究理事会;
关键词
Barium thorium oxide; Perovskite; Phase transition; Neutron diffraction; Synchrotron X-ray diffraction; RESOLUTION POWDER DIFFRACTION; THERMAL-EXPANSION; THERMODYNAMIC STABILITY; BARIUM THORATE; 1ST PRINCIPLES; PEROVSKITES; URANIUM; TEMPERATURE; SOLUBILITY; MINERALS;
D O I
10.1016/j.jallcom.2017.08.200
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The structure of BaThO3, obtained by solid state synthesis, was refined for the first time by the Rietveld method using a combination of synchrotron X-ray and neutron powder diffraction data. BaThO3 has an orthorhombic structure at room temperature, in space group Pbnm with a alpha = 6.3491(5), b = 6.3796(4) and c = 8.9907(7) angstrom. Heating BaThO3 to above 700 degrees C results in a continuous transition to a second orthorhombic structure, in space group Ibmm, demonstrated by both in situ neutron and synchrotron X-ray powder diffraction measurements. The coefficient of volumetric thermal expansion for BaThO3 is determined to be 1.04 x 10(-5) degrees C-1 from 50 to 625 degrees C (Pbnm phase), and 9.43 x 10(-6) degrees C-1 from 800 to 1000 degrees C (Ibmm phase). BaThO3 was found to decompose upon exposure to atmospheric moisture resulting in the formation of ThO2. The thermal expansion of ThO2, which invariably co-exists with BaThO3, is also described. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1044 / 1049
页数:6
相关论文
共 43 条
[1]  
Ali M, 2001, J NUCL MATER, V299, P165, DOI 10.1016/S0022-3115(01)00653-5
[2]   GGA+U studies of the cubic perovskites BaMO3 (M=Pr, Th and U) [J].
Ali, Zahid ;
Ahmad, Iftikhar ;
Reshak, Ali H. .
PHYSICA B-CONDENSED MATTER, 2013, 410 :217-221
[3]   Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems [J].
Brown, N. R. ;
Powers, J. J. ;
Feng, B. ;
Heidet, F. ;
Stauff, N. E. ;
Zhang, G. ;
Todosow, M. ;
Worrall, A. ;
Gehin, J. C. ;
Kim, T. K. ;
Taiwo, T. A. .
NUCLEAR ENGINEERING AND DESIGN, 2015, 289 :252-265
[4]  
Burns PC, 1996, CAN MINERAL, V34, P845
[5]   Lattice parameters of thoria-yttria solid solutions [J].
Cosentino, IC ;
Muccillo, R .
MATERIALS LETTERS, 2001, 48 (05) :253-257
[6]   CLASSIFICATION OF TILTED OCTAHEDRA IN PEROVSKITES [J].
GLAZER, AM .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1972, B 28 (NOV15) :3384-&
[7]   Cation antisite disorder in uranium-doped gadolinium zirconate pyrochlores [J].
Gregg, Daniel J. ;
Zhang, Zhaoming ;
Thorogood, Gordon J. ;
Kennedy, Brendan J. ;
Kimpton, Justin A. ;
Griffiths, Grant J. ;
Guagliardo, Paul R. ;
Lumpkin, Gregory R. ;
Vance, Eric R. .
JOURNAL OF NUCLEAR MATERIALS, 2014, 452 (1-3) :474-478
[8]   Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF3 [J].
Greve, Benjamin K. ;
Martin, Kenneth L. ;
Lee, Peter L. ;
Chupas, Peter J. ;
Chapman, Karena W. ;
Wilkinson, Angus P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (44) :15496-15498
[9]  
Harada Y., 1960, SYNTHESIS REFRACTORY
[10]   Evolution of uranium and thorium minerals [J].
Hazen, Robert M. ;
Ewing, Rodney C. ;
Sverjensky, Dimitri A. .
AMERICAN MINERALOGIST, 2009, 94 (10) :1293-1311