Cactus graphs with minimum edge revised Szeged index

被引:7
作者
Liu, Mengmeng [1 ]
Wang, Shujing [2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Math, Lanzhou 730070, Gansu, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
关键词
Wiener index; Revised szeged index; Edge revised szeged index; Cactus graph; EXTREMAL CACTI; RESPECT;
D O I
10.1016/j.dam.2018.03.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The edge revised Szeged index Sz(e)*(G) is defined as Sz(e)*(G) = Sigma(e=uv is an element of E)(M-u(e) + m(0)(e)/2) (m(v) (e)+ m(0)(e)/2), where m(u)(e) and m(v)(e) are, respectively, the number of edges of G lying closer to vertex u than to vertex v and the number of edges of G lying closer to vertex v than to vertex u, and Inge) is the number of edges equidistant to u and v. A cactus graph is a connected graph in which every block is an edge or a cycle. In this paper, we give a lower bound of the edge revised Szeged index among all m-edges cactus graphs with k cycles, and also characterize those graphs that achieve the lower bound. We also obtain the second minimum edge revised Szeged index for connected cactus graphs of size m with k cycles. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 96
页数:7
相关论文
共 22 条
  • [1] On a conjecture about the Szeged index
    Aouchiche, M.
    Hansen, P.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (07) : 1662 - 1666
  • [2] Bondy J.A., 2008, GTM, V244
  • [3] Cai XC, 2010, MATCH-COMMUN MATH CO, V63, P133
  • [4] Tricyclic graphs with maximal revised Szeged index
    Chen, Lily
    Li, Xueliang
    Liu, Mengmeng
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 177 : 71 - 79
  • [5] A Novel Version of the Edge-Szeged Index
    Dong, Hui
    Zhou, Bo
    Trinajstic, Nenad
    [J]. CROATICA CHEMICA ACTA, 2011, 84 (04) : 543 - 545
  • [6] Gutman I, 1997, MATCH-COMMUN MATH CO, P3
  • [7] GUTMAN I, 1993, INDIAN J CHEM A, V32, P651
  • [8] Gutman I., 1986, Mathematical concepts in organic chemistry, DOI 10.1515/9783112570180
  • [9] Gutman I., 1994, Graph Theory Notes N. Y., V27, P9
  • [10] Gutman I, 2008, CROAT CHEM ACTA, V81, P263