Plasmon resonance coupling phenomena in self-assembled colloidal monolayers

被引:15
作者
Fitzgerald, Joseph P. S. [1 ]
Karg, Matthias [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Phys Chem 1, Univ Str 1, D-40204 Dusseldorf, Germany
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2017年 / 214卷 / 08期
关键词
colloids; Plasmonics; plasmon resonance coupling; resonance engineering; self-assembled monolayers; ENHANCED RAMAN-SCATTERING; STABILIZED GOLD NANOPARTICLES; SURFACE LATTICE RESONANCES; SINGLE-MOLECULE DETECTION; SIZE-CONTROLLED SYNTHESIS; CORE-SHELL NANOCUBES; ORGANIC SOLAR-CELLS; OPTICAL-PROPERTIES; SILVER NANOPARTICLES; METAL NANOPARTICLES;
D O I
10.1002/pssa.201600947
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Colloidal self-assembly merges the flexibility provided by (wet-chemical) colloid synthesis and the structural diversity offered by self-assembly. Using plasmonic nanocrystals as colloidal building blocks, this enables the fabrication of plasmonic superstructures that show optical response superior to the individual colloid properties. In this review, we highlight recent examples of colloidal monolayers featuring coupled plasmonic resonances. Depending on the average inter-particle distance and the structure of such monolayers, the discussed examples show either near-field or radiative coupling signatures depending on the critical interference length scale of the localized resonances. In addition, templated assembly is highlighted as a pathway for the preparation of monolayers that show anisotropic optical coupling. The collected works not only reflect the recent state of the art in plasmonic resonance engineering in self-assembled monolayers, but also point to future directions relevant for their use in nanophotonic applications such as plasmonic lasing.
引用
收藏
页数:15
相关论文
共 117 条
  • [1] Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
  • [2] [Anonymous], 2010, PLASMONICS FUNDAMENT
  • [3] Label-free, single-molecule detection with optical microcavities
    Armani, Andrea M.
    Kulkarni, Rajan P.
    Fraser, Scott E.
    Flagan, Richard C.
    Vahala, Kerry J.
    [J]. SCIENCE, 2007, 317 (5839) : 783 - 787
  • [4] Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime
    Atay, T
    Song, JH
    Nurmikko, AV
    [J]. NANO LETTERS, 2004, 4 (09) : 1627 - 1631
  • [5] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
  • [6] Diffractive coupling in gold nanoparticle arrays and the effect of disorder
    Auguie, Baptiste
    Barnes, William L.
    [J]. OPTICS LETTERS, 2009, 34 (04) : 401 - 403
  • [7] Collective resonances in gold nanoparticle arrays
    Auguie, Baptiste
    Barnes, William L.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (14)
  • [8] Balanis C. A., 2016, ANTENNA DESIGN ANAL, V4th
  • [9] Surface plasmon subwavelength optics
    Barnes, WL
    Dereux, A
    Ebbesen, TW
    [J]. NATURE, 2003, 424 (6950) : 824 - 830
  • [10] Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties
    Bastus, Neus G.
    Merkoci, Florind
    Piella, Jordi
    Puntes, Victor
    [J]. CHEMISTRY OF MATERIALS, 2014, 26 (09) : 2836 - 2846