An Iterative Regularization Method for a Class of Inverse Boundary Value Problems of Elliptic Type

被引:0
作者
Zouyed, Fairouz [1 ]
Debbouche, Souheyla [2 ]
机构
[1] Univ Badji Mokhtar Annaba, Appl Math Lab, POB 12, Annaba 23000, Algeria
[2] Univ Larbi Ben Mhidi, Dept Math, Oum El Bouaghi, Algeria
关键词
inverse problems; ill-posed problems; elliptic problems; iterative regularization method; CAUCHY-PROBLEM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the problem of determining an unknown source and an unknown boundary condition u(0) in a boundary value problem of elliptic type from extra measurements at internal points. The problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. For solving the considered problem an iterative method is proposed. Using this method a regularized solution is constructed and an a priori error estimate between the exact solution and its regularization approximation is obtained. Moreover, the numerical results are presented to illustrate the accuracy and efficiency of this method.
引用
收藏
页码:66 / 85
页数:20
相关论文
共 17 条
[1]  
Bakushinsky A. B., 2004, MATH APPL, V577
[2]  
Bastay G., 1995, LINKOPING STUDIES SC, P392
[3]  
Baumeister J., 2001, J INVERSE ILL-POSE P, V9. 1, P1
[4]   An alternating iterative procedure for the Cauchy problem for the Helmholtz equation [J].
Berntsson, F. ;
Kozlov, V. A. ;
Mpinganzima, L. ;
Turesson, B. O. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2014, 22 (01) :45-62
[5]   Two regularization methods for a class of inverse boundary value problems of elliptic type [J].
Bouzitouna, Abdallah ;
Boussetila, Nadjib ;
Rebbani, Faouzia .
BOUNDARY VALUE PROBLEMS, 2013,
[6]   A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions [J].
Deuflhard, P ;
Engl, HW ;
Scherzer, O .
INVERSE PROBLEMS, 1998, 14 (05) :1081-1106
[7]  
Goldstein J.A., 1985, Semigroups of Linear Operators and Applications
[8]   FUNKTIONENTHEORETISCHE BESTIMMUNG DES AUSSENFELDES ZU EINER ZWEIDIMENSIONALEN MAGNETOHYDROSTATISCHEN KONFIGURATION [J].
GORENFLO, R .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1965, 16 (02) :279-&
[9]  
Johnson CR, 1997, CRIT REV BIOMED ENG, V25, P1, DOI 10.1615/CritRevBiomedEng.v25.i1.10
[10]  
Kozlov V. A., 1990, Leningrad Math. J., V1, P1207