Evaluating the Arrhenius equation for developmental processes

被引:60
作者
Crapse, Joseph [1 ,2 ,3 ]
Pappireddi, Nishant [2 ,3 ]
Gupta, Meera [2 ,3 ,4 ]
Shvartsman, Stanislav Y. [1 ,2 ,3 ,5 ]
Wieschaus, Eric [1 ,2 ,3 ]
Wuhr, Martin [1 ,2 ,3 ]
机构
[1] Princeton Univ, Undergrad Integrated Sci Curriculum, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[3] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[4] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[5] Simons Fdn, Ctr Computat Biol, Flatiron Inst, New York, NY USA
关键词
Arrhenius equation; Drosophila melanogaster; embryonic development; temperature dependence; Xenopus laevis; TEMPERATURE-DEPENDENCE; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; ACTIVATED COMPLEX; XENOPUS-LAEVIS; MODEL; DENATURATION;
D O I
10.15252/msb.20209895
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The famous Arrhenius equation is well suited to describing the temperature dependence of chemical reactions but has also been used for complicated biological processes. Here, we evaluate how well the simple Arrhenius equation predicts complex multi-step biological processes, using frog and fruit fly embryogenesis as two canonical models. We find that the Arrhenius equation provides a good approximation for the temperature dependence of embryogenesis, even though individual developmental intervals scale differently with temperature. At low and high temperatures, however, we observed significant departures from idealized Arrhenius Law behavior. When we model multi-step reactions of idealized chemical networks, we are unable to generate comparable deviations from linearity. In contrast, we find the two enzymes GAPDH and beta-galactosidase show non-linearity in the Arrhenius plot similar to our observations of embryonic development. Thus, we find that complex embryonic development can be well approximated by the simple Arrhenius equation regardless of non-uniform developmental scaling and propose that the observed departure from this law likely results more from non-idealized individual steps rather than from the complexity of the system.
引用
收藏
页数:12
相关论文
共 54 条
[1]  
[Anonymous], 2007, Statistical Concepts: A Second Course for education and the behavioral sciences
[2]   Temperature, Dynamics, and Enzyme-Catalyzed Reaction Rates [J].
Arcus, Vickery L. ;
Mulholland, Adrian J. .
ANNUAL REVIEW OF BIOPHYSICS, VOL 49, 2020, 2020, 49 :163-180
[3]   On the Temperature Dependence of Enzyme-Catalyzed Rates [J].
Arcus, Vickery L. ;
Prentice, Erica J. ;
Hobbs, Joanne K. ;
Mulholland, Adrian J. ;
Van der Kamp, Marc W. ;
Pudney, Christopher R. ;
Parker, Emily J. ;
Schipper, Louis A. .
BIOCHEMISTRY, 2016, 55 (12) :1681-1688
[4]  
Arrhenius S., 1889, Zeitschrift fur physikalische Chemie, V4, P226
[5]  
Ball DW., 2014, Introductory chemistry 1st Canadian edition, V1st, P531
[6]   Temperature Dependence of Cell Division Timing Accounts for a Shift in the Thermal Limits of C. elegans and C. briggsae [J].
Begasse, Maria L. ;
Leaver, Mark ;
Vazquez, Federico ;
Grill, Stephan W. ;
Hyman, Anthony A. .
CELL REPORTS, 2015, 10 (05) :647-653
[7]  
Berthelot M., 1862, Ann Chim Phys, V66, P110
[8]   Temperature characteristics for prepupal development in Drosophila melanogaster. [J].
Bliss, CI .
JOURNAL OF GENERAL PHYSIOLOGY, 1926, 9 (04) :467-495
[9]  
Bonnier G, 1926, BR J EXP BIOL, V4, P186
[10]   Precise Temporal Regulation of Post-transcriptional Repressors Is Required for an Orderly Drosophila Maternal-to-Zygotic Transition [J].
Cao, Wen Xi ;
Kabelitz, Sarah ;
Gupta, Meera ;
Yeung, Eyan ;
Lin, Sichun ;
Rammelt, Christiane ;
Ihling, Christian ;
Pekovic, Filip ;
Low, Timothy C. H. ;
Siddiqui, Najeeb U. ;
Cheng, Matthew H. K. ;
Angers, Stephane ;
Smibert, Craig A. ;
Wuehr, Martin ;
Wahle, Elmar ;
Lipshitz, Howard D. .
CELL REPORTS, 2020, 31 (12)