Arens regularity and the second dual of certain quotients of the Fourier algebra

被引:5
作者
Graham, CC
机构
[1] RR#1-site, H-46, Bowen Island
关键词
D O I
10.1093/qjmath/52.1.13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every metrizable locally compact abellian group contains a closed subset E such that the restriction A(E) of the Fourier algebra to E is Arens regular whatever the bounded multiplication it is given, but such that neither (A) over tilde (E) nor A(E)** is Arens regular (in their natural multiplications).
引用
收藏
页码:13 / 24
页数:12
相关论文
共 25 条
[1]   THE ADJOINT OF A BILINEAR OPERATION [J].
ARENS, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (06) :839-848
[2]  
Beauzamy B, 1982, North-Holland Mathematics Studies, V68
[3]  
CIVIN P, 1961, PAC J MATH, V11, P847
[4]  
DALES HG, 1999, COMMUNICATION
[5]   THE GROTHENDIECK-PIETSCH AND DVORETZKY-ROGERS THEOREMS FOR OPERATOR-SPACES [J].
EFFROS, E ;
RUAN, ZJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :428-450
[6]  
Graham C. C., 1979, ESSAYS COMMUTATIVE H
[7]  
GRAHAM CC, UNPUB ARENS REGULARI
[8]  
GRAHAM CC, IN PRESS ILLINOIS J
[9]  
GRAHAM CC, IN PRESS B LONDON MA
[10]  
GRAHAM CC, 1969, J FUNCT ANAL, V4, P317