Convolution and Correlation Theorems for Wigner-Ville Distribution Associated with Linear Canonical Transform

被引:17
作者
Bahri, Mawardi [1 ]
Ashino, Ryuichi [2 ]
机构
[1] Hasanuddin Univ, Dept Math, Makassar 90245, Indonesia
[2] Osaka Kyoiku Univ, Div Math Sci, Osaka 5828582, Japan
来源
2015 12TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY - NEW GENERATIONS | 2015年
关键词
Wigner-Ville distribution; linear canonical transform; convolution; correlation; modulation;
D O I
10.1109/ITNG.2015.61
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Generalized convolution and correlation theorems for the Wigner-Ville distribution (transform) associated with linear canonical transform (WVD-LCT) are established. The proposed theorems are modified forms of the convolution and correlation theorems of the linear canonical transform and classical Wigner-Ville distribution.
引用
收藏
页码:341 / 346
页数:6
相关论文
共 20 条
[1]   Fractional transforms in optical information processing [J].
Alieva, T ;
Bastiaans, MJ ;
Calvo, ML .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2005, 2005 (10) :1498-1519
[2]  
Bahri M., 2013, Far East J. Math. Sci., V80, P123
[3]   On Two-Dimensional Quaternion Wigner-Ville Distribution [J].
Bahri, Mawardi .
JOURNAL OF APPLIED MATHEMATICS, 2014,
[4]   Wigner-Ville Distribution Associated with the Linear Canonical Transform [J].
Bai, Rui-Feng ;
Li, Bing-Zhao ;
Cheng, Qi-Yuan .
JOURNAL OF APPLIED MATHEMATICS, 2012,
[5]  
Bracewell R.N., 1986, FOURIER TRANSFORM IT, V2nd
[7]   On new two-dimensional Wigner-Ville nonlinear integral transforms and their basic properties [J].
Debnath, L. ;
Rao, B. V. Shankara Narayana .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (03) :165-174
[8]  
Debnath L., 2002, Wavelet transforms and their application, Vsecond, DOI DOI 10.1007/978-1-4612-0097-0
[9]   A MODIFIED CONVOLUTION AND PRODUCT THEOREM FOR THE LINEAR CANONICAL TRANSFORM DERIVED BY REPRESENTATION TRANSFORMATION IN QUANTUM MECHANICS [J].
Goel, Navdeep ;
Singh, Kulbir .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (03) :685-695
[10]  
Grochenig K, 2001, Foundations of Time-Frequency Analysis. Applied andNumerical Harmonic Analysis, DOI DOI 10.1007/978-1-4612-0003-1