Nitrogen-Doped MOF-Derived Micropores Carbon as Immobilizer for Small Sulfur Molecules as a Cathode for Lithium Sulfur Batteries with Excellent Electrochemical Performance

被引:234
作者
Li, Zhaoqiang [1 ]
Yin, Longwei [1 ]
机构
[1] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Sch Mat Sci & Engn, Jinan 250061, Peoples R China
关键词
carbon; metal organic framework; nitrogen doping micropores; lithium sulfur battery; LI-S BATTERIES; HIGH-CAPACITY; LIQUID ELECTROLYTE; CYCLING STABILITY; FUNCTIONAL-GROUPS; ANODE MATERIALS; GRAPHENE OXIDE; ION BATTERIES; COMPOSITE; DISCHARGE;
D O I
10.1021/am507660y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nitrogen-doped carbon (NDC) spheres with abundant 22 nm mesopores and 0.5 nm micropores are obtained by directly carbonization of nitrogen-contained metal organic framework (MOF) nanocrystals. Large S-8 and small S2-4 molecules are successfully infiltrated into 22 nm mesopores and 0.5 nm micropores, respectively. We successfully investigate the effect of sulfur immobilization in mesopores and micropores on the electrochemical performance of lithiumsulfur (Li-S) battery based on NDCsulfur hybrid cathodes. The large S-8 molecules in 22 nm mesopores can be removed by a prolonged heat treatment, with only small molecules of S2-4 immobilized in micropores of NDC matrices. The NDC/S2-4 hybrid exhibits excellent cycling performance, high Coulombic efficiency, and good rate capability as cathode for Li-S batteries. The confinement of smaller S2-4 molecules in the micropores of NDS efficiently avoids the loss of active sulfur and formation of soluble high-order Li polysulfides. The porous carbon can buffer the volume expansion and contraction changes, promising a stable structure for cathode. Furthermore, N doping in MOF-derived carbon not only facilitates the fast charge transfer but also is helpful in building a stronger interaction between carbon and sulfur, strengthening immobilization ability of S2-4 in micropores. The NDS-sulfur hybrid cathode exhibits a reversible capacity of 936.5 mAh g(-1) at 100th cycle with a Coulombic efficiency of 100% under a current density of 335 mA g(-1). It displays a superior rate capability performance, delivering a capacity of 632 mAh g(-1) at a high rate of 5 A g(-1). This uniquely porous NDC derived from MOF nanocrystals could be applied in related high-energy storage devices.
引用
收藏
页码:4029 / 4038
页数:10
相关论文
共 45 条
[1]   A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery [J].
Barghamadi, Marzieh ;
Kapoor, Ajay ;
Wen, Cuie .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (08) :A1256-A1263
[2]   Rechargeable lithium sulfur battery - I. Structural change of sulfur cathode during discharge and charge [J].
Cheon, SE ;
Ko, KS ;
Cho, JH ;
Kim, SW ;
Chin, EY ;
Kim, HT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A796-A799
[3]  
Dharmasena P., 1993, SCIENCE, V261, P1029
[4]   Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy [J].
Elazari, Ran ;
Salitra, Gregory ;
Talyosef, Yossi ;
Grinblat, Judith ;
Scordilis-Kelley, Charislea ;
Xiao, Ang ;
Affinito, John ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) :A1131-A1138
[5]   Effects of Liquid Electrolytes on the Charge-Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies [J].
Gao, Jie ;
Lowe, Michael A. ;
Kiya, Yasuyuki ;
Abruna, Hector D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (50) :25132-25137
[6]   Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium-Sulfur Batteries [J].
Guo, Juchen ;
Xu, Yunhua ;
Wang, Chunsheng .
NANO LETTERS, 2011, 11 (10) :4288-4294
[7]   Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors [J].
Hulicova-Jurcakova, Denisa ;
Seredych, Mykola ;
Lu, Gao Qing ;
Bandosz, Teresa J. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (03) :438-447
[8]   From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake [J].
Jiang, Hai-Long ;
Liu, Bo ;
Lan, Ya-Qian ;
Kuratani, Kentaro ;
Akita, Tomoki ;
Shioyama, Hiroshi ;
Zong, Fengqi ;
Xu, Qiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (31) :11854-11857
[9]   Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites [J].
Lai, C. ;
Gao, X. P. ;
Zhang, B. ;
Yan, T. Y. ;
Zhou, Z. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (11) :4712-4716
[10]   Effect of Pores in Hollow Carbon Nanofibers on Their Negative Electrode Properties for a Lithium Rechargeable Battery [J].
Lee, Byoung-Sun ;
Son, Seoung-Bum ;
Park, Kyu-Min ;
Lee, Geunsung ;
Oh, Kyu Hwan ;
Lee, Se-Hee ;
Yu, Woong-Ryeol .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (12) :6701-6709