Nonlinear wave-wave interaction and stability criterion for parametrically coupled nonlinear Schrodinger equations

被引:11
作者
El-Dib, YO [1 ]
机构
[1] Ain Shams Univ, Fac Educ, Dept Math, Cairo, Egypt
关键词
coupled nonlinear Schrodinger equations; weakly nonlinear interaction; waves instability; parametric nonlinear system; resonance mechanisms; multiple scales method;
D O I
10.1023/A:1011125708998
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A rigorous mathematical reduction of the procedure widely used for studying a class of the nonlinear problems with perturbations, namely the method of the multiple scales, is used. A profound analysis, which provides an approach for deriving a coupled nonlinear Schrodinger equations. The investigation has been achieved by perturbing the nonlinear dynamical system about the linear dynamical problem. Modulated wavetrains are described to all orders of approximation. Moreover, we extend our approach to deal with equations having periodic terms. Two types of simultaneous nonlinear Schrodinger equations are derived. One type is valid at the non-parametric system and the second type represents a modification for the first type which is governed the non-resonance case. Two parametric coupled nonlinear Schrodeinger equations are derived to govern the second-sub-harmonic resonance. In addition other two coupled equations are found for the third-sub-harmonic resonance case. These systems of equations control the stability behavior at the parametric resonance cases. The stability criteria for the several types of coupled nonlinear Schrodinger equations are studied. These criteria are achieved by a temporal periodic perturbation.
引用
收藏
页码:399 / 418
页数:20
相关论文
共 39 条
[1]  
BAHAKTA JC, 1982, J PLASMA PHYS, V28, P379
[2]   3-DIMENSIONAL PACKETS OF SURFACE-WAVES [J].
DAVEY, A ;
STEWARTSON, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, 338 (1613) :101-110
[3]   Nonlinear stability of an electrified interface supporting surface charges between two viscous fluids [J].
El-Dib, YO .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 210 (01) :103-117
[4]   Instability of parametrically second- and third-subharmonic resonances governed by nonlinear Shrodinger equations with complex coefficients [J].
El-Dib, YO .
CHAOS SOLITONS & FRACTALS, 2000, 11 (11) :1773-1787
[5]   NOTE ON THE STABILITY-CRITERION OF A NONLINEAR PARTIAL-DIFFERENTIAL EQUATION OF SCHRODINGER TYPE [J].
ELDIB, YO .
APPLIED MATHEMATICS LETTERS, 1994, 7 (03) :89-92
[6]   NONLINEAR HYDRODYNAMIC RAYLEIGH-TAYLOR INSTABILITY OF VISCOUS MAGNETIC FLUIDS - EFFECT OF A TANGENTIAL MAGNETIC-FIELD [J].
ELDIB, YO .
JOURNAL OF PLASMA PHYSICS, 1994, 51 :1-11
[7]   NONLINEAR GRAVITY-CAPILLARY WAVES INSTABILITY IN SUPERPOSED MAGNETIC FLUIDS INFLUENCED BY A VERTICAL MAGNETIC-FIELD AND TIME-DEPENDENT ACCELERATION [J].
ELDIB, YO .
FLUID DYNAMICS RESEARCH, 1995, 15 (06) :385-404
[8]   NONLINEAR STABILITY OF SURFACE-WAVES IN MAGNETIC FLUIDS - EFFECT OF A PERIODIC TANGENTIAL MAGNETIC-FIELD [J].
ELDIB, YO .
JOURNAL OF PLASMA PHYSICS, 1993, 49 :317-330
[9]   A PARAMETRIC NONLINEAR SCHRODINGER-EQUATION AND STABILITY-CRITERION [J].
ELDIB, YO .
CHAOS SOLITONS & FRACTALS, 1995, 5 (06) :1007-1012
[10]   EFFECT OF A PERIODIC ACCELERATION ON NONLINEAR MODULATION OF INTERFACIAL GRAVITY-CAPILLARY WAVES BETWEEN 2 ELECTRIFIED FLUIDS UNDER THE INFLUENCE OF A HORIZONTAL ELECTRIC-FIELD [J].
ELDIB, YO .
CANADIAN JOURNAL OF PHYSICS, 1994, 72 (9-10) :578-590