A limiting case for velocity averaging

被引:79
作者
Perthame, B
Souganidis, PE
机构
[1] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 1998年 / 31卷 / 04期
关键词
D O I
10.1016/S0012-9593(98)80108-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We complete the theory of velocity averaging lemmas for transport equations by studying the limiting case of a full space derivative in the source term. Although the compactness of averages does not hold any longer, a specific estimate remains, which shows compactness of averages in more general situations than those previously known. Our method is based on Calderon-Zygmund theory. (C) Elsevier, Paris.
引用
收藏
页码:591 / 598
页数:8
相关论文
共 15 条
[1]  
Agoshkov V.I., 1984, SOVIET MATH DOKL, V29, P662
[2]   THE NONACCRETIVE RADIATIVE-TRANSFER EQUATIONS - EXISTENCE OF SOLUTIONS AND ROSSELAND APPROXIMATION [J].
BARDOS, C ;
GOLSE, F ;
PERTHAME, B ;
SENTIS, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 77 (02) :434-460
[3]   PRECISED LP REGULARITY OF THE MEANS IN TRANSPORT-EQUATIONS [J].
BEZARD, M .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (01) :29-76
[4]  
BOUCHUT F, AVERAGING LEMMAS TIM
[5]   About the splitting algorithm for Boltzmann and BGK equations [J].
Desvillettes, L ;
Mischler, S .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (08) :1079-1101
[6]   GLOBAL WEAK SOLUTIONS OF VLASOV-MAXWELL SYSTEMS [J].
DIPERNA, RJ ;
LIONS, PL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :729-757
[7]   LP REGULARITY OF VELOCITY AVERAGES [J].
DIPERNA, RJ ;
LIONS, PL ;
MEYER, Y .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (3-4) :271-287
[8]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[9]  
GERARD P, 1990, ANN SCI ECOLE NORM S, V23, P89
[10]   MICROLOCAL DEFECT MEASURES [J].
GERARD, P .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (11) :1761-1794