High-performance and scalable on-chip digital Fourier transform spectroscopy

被引:228
作者
Kita, Derek M. [1 ,2 ]
Miranda, Brando [3 ]
Favela, David [4 ]
Bono, David [1 ]
Michon, Jerome [1 ,2 ]
Lin, Hongtao [1 ,2 ]
Gu, Tian [1 ,2 ]
Hu, Juejun [1 ,2 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Mat Res Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Ctr Brains Minds & Machines, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
SILICON; INSULATOR; COMPACT; SPECTROMETERS; DEPENDENCE;
D O I
10.1038/s41467-018-06773-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
On-chip spectrometers have the potential to offer dramatic size, weight, and power advantages over conventional benchtop instruments for many applications such as spectroscopic sensing, optical network performance monitoring, hyperspectral imaging, and radiofrequency spectrum analysis. Existing on-chip spectrometer designs, however, are limited in spectral channel count and signal-to-noise ratio. Here we demonstrate a transformative on-chip digital Fourier transform spectrometer that acquires high-resolution spectra via time-domain modulation of a reconfigurable Mach-Zehnder interferometer. The device, fabricated and packaged using industry-standard silicon photonics technology, claims the multiplex advantage to dramatically boost the signal-to-noise ratio and unprecedented scalability capable of addressing exponentially increasing numbers of spectral channels. We further explore and implement machine learning regularization techniques to spectrum reconstruction. Using an 'elastic-D-1' regularized regression method that we develop, we achieved significant noise suppression for both broad (>600 GHz) and narrow (<25 GHz) spectral features, as well as spectral resolution enhancement beyond the classical Rayleigh criterion.
引用
收藏
页数:7
相关论文
共 37 条
[11]   A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array [J].
Gan, Xuetao ;
Pervez, Nadia ;
Kymissis, Ioannis ;
Hatami, Fariba ;
Englund, Dirk .
APPLIED PHYSICS LETTERS, 2012, 100 (23)
[12]  
Griffiths P.R., 2007, Fourier transform infrared spectrometry
[13]   Efficient, compact and low loss thermo-optic phase shifter in silicon [J].
Harris, Nicholas C. ;
Ma, Yangjin ;
Mower, Jacob ;
Baehr-Jones, Tom ;
Englund, Dirk ;
Hochberg, Michael ;
Galland, Christophe .
OPTICS EXPRESS, 2014, 22 (09) :10487-10493
[14]  
Harwit M., 2012, Hadamard transform optics
[15]   Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers [J].
Herrero-Bermello, Alaine ;
Velasco, Aitor V. ;
Podmore, Hugh ;
Cheben, Pavel ;
Schmid, Jens H. ;
Janz, Siegfried ;
Calvo, Maria L. ;
Xu, Dan-Xia ;
Scott, Alan ;
Corredera, Pedro .
OPTICS LETTERS, 2017, 42 (11) :2239-2242
[16]  
Kita D. M., 2018, CLEO C LAS EL, P1, DOI [10.1364/CLEO_SI.2018.SF1A.1, DOI 10.1364/CLEO_SI.2018.SF1A.1]
[17]   Sub-nm resolution cavity enhanced microspectrometer [J].
Kyotoku, Bernardo B. C. ;
Chen, Long ;
Lipson, Michal .
OPTICS EXPRESS, 2010, 18 (01) :102-107
[18]   Wavelength-scale stationary-wave integrated Fourier-transform spectrometry [J].
Le Coarer, Etienne ;
Blaize, Sylvain ;
Benech, Pierre ;
Stefanon, Ilan ;
Morand, Alain ;
Lerondel, Gilles ;
Leblond, Gregory ;
Kern, Pierre ;
Fedeli, Jean Marc ;
Royer, Pascal .
NATURE PHOTONICS, 2007, 1 (08) :473-478
[19]   Miniature Fourier transform spectrometer based on wavelength dependence of half-wave voltage of a LiNbO3 waveguide interferometer [J].
Li, Jinyang ;
Lu, Dan-feng ;
Qi, Zhi-mei .
OPTICS LETTERS, 2014, 39 (13) :3923-3926
[20]   On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities [J].
Liapis, Andreas C. ;
Gao, Boshen ;
Siddiqui, Mahmudur R. ;
Shi, Zhimin ;
Boyd, Robert W. .
APPLIED PHYSICS LETTERS, 2016, 108 (02)