Subcutaneous Neural Inverse Optimal Control for an Artificial Pancreas

被引:0
|
作者
Leon, Blanca S. [2 ]
Alanis, Alma Y. [1 ]
Sanchez, Edgar N. [2 ]
Ornelas-Tellez, Fernando [3 ]
Ruiz-Velazquez, Eduardo [1 ]
机构
[1] Univ Guadalajara, CUCEI, Zapopan 45080, Jalisco, Mexico
[2] CINVESTAV, Unidad Guadalajara, Guadalajara 45091, Jalisco, Mexico
[3] UMSNH, Fac Ingn Elect, Div Estudios Posgrad, Morelia 58030, Michoacan, Mexico
来源
2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2013年
关键词
BLOOD-GLUCOSE LEVEL; NONLINEAR CONTROL; CONTROL-SYSTEMS; TIME; MODEL; NETWORK; DESIGN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Type 1 Diabetes mellitus (T1DM) is a chronic disease that occurs when the body cannot produce insulin. Since insulin was discovered in 1920, the way to keep T1DM patients blood glucose at normal levels has been insulin injections, via subcutaneous or intravenous paths. The efforts for an external infusion therapy have resulted in the so-called Artificial Pancreas. Such device attempts to integrate continuous insulin infusion, continuous glucose monitoring and an automatic control algorithm, which calculates the required insulin infusion. Considering all the problems related to T1DM, in this paper a neural model which captures the nonlinear behavior of the complex glucose-insulin dynamics is proposed; based on this model, a control algorithm is developed using the neural inverse optimal control via control lyapunov function (CLF) technique. Simulation results illustrate the applicability of the propounded scheme.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Direct Inverse Control using an Artificial Neural Network for the Autonomous Hover of a Helicopter
    Frye, Michael T.
    Provence, Robert S.
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 4121 - 4122
  • [32] Inverse dynamic control via "simulation of feedback control" by artificial neural networks for a crane system
    Rincon, Liz
    Kubota, Yuta
    Venture, Gentiane
    Tagawa, Yasutaka
    CONTROL ENGINEERING PRACTICE, 2020, 94
  • [33] Optimal Control and Inverse Optimal Control by Distribution Matching
    Arenz, Oleg
    Abdulsamad, Hany
    Neumann, Gerhard
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 4046 - 4053
  • [34] NEURAL CONTROL OF ENDOCRINE PANCREAS
    WOODS, SC
    PORTE, D
    PHYSIOLOGICAL REVIEWS, 1974, 54 (03) : 596 - 619
  • [35] NEURAL CONTROL OF THE ENDOCRINE PANCREAS
    MATTHEWS, DR
    CLARK, A
    PROCEEDINGS OF THE NUTRITION SOCIETY, 1987, 46 (01) : 89 - &
  • [36] Solving an Optimal Control Problem of Cancer Treatment by Artificial Neural Networks
    Heydarpour, F.
    Abbasi, E.
    Ebadi, M. J.
    Karbassi, S. M.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2020, 6 (04): : 18 - 25
  • [37] Neural control of the endocrine pancreas
    Rodriguez-Diaz, Rayner
    Caicedo, Alejandro
    BEST PRACTICE & RESEARCH CLINICAL ENDOCRINOLOGY & METABOLISM, 2014, 28 (05) : 745 - 756
  • [38] Neural inverse optimal control applied to type 1 diabetes mellitus patients
    Leon, Blanca S.
    Alanis, Alma Y.
    Sanchez, Edgar N.
    Ornelas-Tellez, Fernando
    Ruiz-Velazquez, Eduardo
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2013, 76 (03) : 343 - 352
  • [39] Real-time neural inverse optimal control for a linear induction motor
    Lopez, Victor G.
    Sanchez, Edgar N.
    Alanis, Alma Y.
    Rios, Jorge D.
    INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (04) : 800 - 812
  • [40] Discrete-Time Decentralized Inverse Optimal Neural Control for a Shrimp Robot
    Lopez-Franco, Michel
    Sanchez, Edgar N.
    Alanis, Alma Y.
    Arana-Daniel, Nancy
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 1183 - 1188