Practical decoy-state BB84 quantum key distribution with quantum memory*

被引:2
作者
Li, Xian-Ke [1 ,2 ,3 ]
Song, Xiao-Qian [1 ,2 ,3 ]
Guo, Qi-Wei [1 ]
Zhou, Xing-Yu [1 ,2 ,3 ]
Wang, Qin [1 ,2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Minist Educ, Key Lab, Broadband Wireless Commun & Sensor Network Techno, Nanjing 210003, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Telecommun & Networks Natl Engn Res Ctr, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum key distribution; quantum communication; quantum memory; decoy state; SECURITY;
D O I
10.1088/1674-1056/abda31
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize BB84 quantum key distribution (QKD) to the scenario where the receiver adopts a heralded quantum memory (QM). With the heralded QM, the valid dark count rate of the receiver's single photon detectors can be mitigated obviously, which will lower the quantum bit error rate, and thus improve the performance of decoy-state BB84 QKD systems in long distance range. Simulation results show that, with practical experimental system parameters, decoy-state BB84 QKD with QM can exhibit performance comparable to that of without QM in short distance range, and exhibit performance better than that without QM in long distance range.
引用
收藏
页数:4
相关论文
共 33 条
[1]   Measurement-device-independent quantum key distribution with quantum memories [J].
Abruzzo, Silvestre ;
Kampermann, Hermann ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2014, 89 (01)
[2]  
Bennett C. H., 1984, P IEEE INT C COMP SY, V1, P175, DOI [10.1016/j.tcs.2014.05.025, DOI 10.1016/J.TCS.2014.05.025]
[3]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[4]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[5]   A broadband DLCZ quantum memory in room-temperature atoms [J].
Dou, Jian-Peng ;
Yang, Ai-Lin ;
Du, Mu-Yan ;
Lao, Di ;
Gao, Jun ;
Qiao, Lu-Feng ;
Li, Hang ;
Pang, Xiao-Ling ;
Feng, Zhen ;
Tang, Hao ;
Jin, Xian-Min .
COMMUNICATIONS PHYSICS, 2018, 1
[6]   Three-dimensional theory for interaction between atomic ensembles and free-space light [J].
Duan, LM ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW A, 2002, 66 (02) :1-13
[7]   Long-distance quantum communication with atomic ensembles and linear optics [J].
Duan, LM ;
Lukin, MD ;
Cirac, JI ;
Zoller, P .
NATURE, 2001, 414 (6862) :413-418
[8]   Storage and Retrieval of THz-Bandwidth Single Photons Using a Room-Temperature Diamond Quantum Memory [J].
England, Duncan G. ;
Fisher, Kent A. G. ;
MacLean, Jean-Philippe W. ;
Bustard, Philip J. ;
Lausten, Rune ;
Resch, Kevin J. ;
Sussman, Benjamin J. .
PHYSICAL REVIEW LETTERS, 2015, 114 (05)
[9]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[10]  
Gottesman D, 2004, 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, P136