Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter- and 3'-untranslated region exchange experiments in the Arabidopsis cat2 photorespiratory mutant

被引:87
作者
Hu, Ye-Qin [1 ]
Liu, Sheng [1 ]
Yuan, Hong-Mei [1 ]
Li, Jing [1 ]
Yan, Da-Wei [1 ]
Zhang, Jian-Feng [1 ]
Lu, Ying-Tang [1 ]
机构
[1] Wuhan Univ, Key Lab MOE Plant Dev Biol, Coll Life Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
3'-untranslated region; Arabidopsis; catalase; hydrogen peroxide; leaf; photorespiration; promoter-exchange experiments; PLANT STRESS RESPONSES; HORDEUM-VULGARE-L; REACTIVE OXYGEN; OXIDATIVE STRESS; MESSENGER-RNA; DIFFERENTIAL EXPRESSION; LEAF SENESCENCE; ACTIVE OXYGEN; C-3; PLANTS; CELL-DEATH;
D O I
10.1111/j.1365-3040.2010.02171.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Photorespiration-associated production of H2O2 accounts for the majority of total H2O2 in leaves of C-3 plants and is mainly eliminated by catalases. In Arabidopsis, lack of CAT2, but not CAT1 or CAT3, results in growth suppression and a marked accumulation of H2O2 in leaves. To evaluate the contribution of individual catalase genes and their promoters to catalase function, we investigated the growth suppression and H2O2 accumulation phenotypes of Arabidopsis derivatives expressing catalase genes from heterologous CAT promoters in a cat2 mutant background. The expression of CAT2 from the CAT2 promoter restored the wild-type phenotype in a cat2-1 mutant, while CAT1 and CAT3 promoter-driven expression of CAT2 did not. Ectopic expression of CAT3 from the CAT2 promoter also restored the normal phenotype, unlike that of CAT1 which required replacement of the CAT1 3'-untranslated region (UTR) with that of CAT2. These results demonstrated that the photorespiratory role of CAT2 is determined mainly by the regulation of its promoter activity. The 3'-UTR of CAT2 was vital for controlling CAT2 protein levels under photorespiratory conditions. Identification of component of heterotetramers catalase isoforms suggested that there is some functional redundancy between CAT2 and CAT1 and CAT3.
引用
收藏
页码:1656 / 1670
页数:15
相关论文
共 65 条
[1]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[2]  
Atherton E., 1989, SOLID PHASE PEPTIDE
[3]   ACTIVE OXYGEN IN PLANT PATHOGENESIS [J].
BAKER, CJ ;
ORLANDI, EW .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1995, 33 :299-321
[4]   GLYOXYSOMES IN HIGHER-PLANTS [J].
BEEVERS, H .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1982, 386 (MAY) :243-253
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene [J].
Bueso, Eduardo ;
Alejandro, Santiago ;
Carbonell, Pablo ;
Perez-Amador, Miguel A. ;
Fayos, Joaquin ;
Belles, Jose M. ;
Rodriguez, Pedro L. ;
Serrano, Ramon .
PLANT JOURNAL, 2007, 52 (06) :1052-1065
[7]   EFFECTS OF MOLECULAR-OXYGEN ON DETECTION OF SUPEROXIDE RADICAL WITH NITROBLUE TETRAZOLIUM AND ON ACTIVITY STAINS FOR CATALASE [J].
CLARE, DA ;
DUONG, MN ;
DARR, D ;
ARCHIBALD, F ;
FRIDOVICH, I .
ANALYTICAL BIOCHEMISTRY, 1984, 140 (02) :532-537
[8]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[9]   Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells [J].
Corpas, FJ ;
Barroso, JB ;
del Río, LA .
TRENDS IN PLANT SCIENCE, 2001, 6 (04) :145-150
[10]   Dual action of the active oxygen species during plant stress responses [J].
Dat, J ;
Vandenabeele, S ;
Vranová, E ;
Van Montagu, M ;
Inzé, D ;
Van Breusegem, F .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2000, 57 (05) :779-795