High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte

被引:295
作者
Bai, Songyan [1 ]
Sun, Yang [1 ]
Yi, Jin [1 ]
He, Yibo [1 ,2 ]
Qiao, Yu [1 ,2 ]
Zhou, Haoshen [1 ,2 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Interface Technol Grp, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
[2] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tennoudai 1-1-1, Tsukuba, Ibaraki 3058573, Japan
[3] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
关键词
POROUS COORDINATION POLYMERS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; RECHARGEABLE BATTERIES; SURFACE; LIQUID; ELECTRODEPOSITS; CONDUCTIVITY; SEPARATIONS; TEMPERATURE;
D O I
10.1016/j.joule.2018.07.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although the Li-metal anode holds the key to overcoming the bottleneck of current Li-ion rechargeable batteries, the trade-off between safety and practicality, especially at high current densities, is a major barrier because of the formation of hazardous Li dendrites arising from inhomogeneous Li electrodeposition. Herein we demonstrate the feasibility of achieving homogeneous Li electrodeposition by implementing porous metal-organic framework (MOF) species in pristine liquid electrolyte. The MOF host provides considerable natural angstrom-level pores that preferentially control the migration of large-sized anions. Consequently, the "caged" electrolyte anions facilitate a homogeneous Liion flux, which illustrates a stable Li-metal plating/stripping at a practically high current density (10 mA cm(-2)). As a proof of concept, the high areal-loading Li-Li4Ti5O12 batteries (similar to 10 mg cm(-2) ) with the MOF modified electrolyte deliver excellent long-life cycling at high current densities (similar to 7 mA cm(-2)). Our results underline the great potential of MOFs in tuning the electrolyte properties to achieve desirable Li-metal battery performance.
引用
收藏
页码:2117 / 2132
页数:16
相关论文
共 65 条
[31]   Chemistry of coordination space of porous coordination polymers [J].
Kitagawa, Susumu ;
Matsuda, Ryotaro .
COORDINATION CHEMISTRY REVIEWS, 2007, 251 (21-24) :2490-2509
[32]   Van der Waals density functionals applied to solids [J].
Klimes, Jiri ;
Bowler, David R. ;
Michaelides, Angelos .
PHYSICAL REVIEW B, 2011, 83 (19)
[33]   Metal-Organic Framework Materials as Chemical Sensors [J].
Kreno, Lauren E. ;
Leong, Kirsty ;
Farha, Omar K. ;
Allendorf, Mark ;
Van Duyne, Richard P. ;
Hupp, Joseph T. .
CHEMICAL REVIEWS, 2012, 112 (02) :1105-1125
[34]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[35]   Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) :15-50
[36]   Relation between the ion size and pore size for an electric double-layer capacitor [J].
Largeot, Celine ;
Portet, Cristelle ;
Chmiola, John ;
Taberna, Pierre-Louis ;
Gogotsi, Yury ;
Simon, Patrice .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (09) :2730-+
[37]   Metal-organic framework materials as catalysts [J].
Lee, JeongYong ;
Farha, Omar K. ;
Roberts, John ;
Scheidt, Karl A. ;
Nguyen, SonBinh T. ;
Hupp, Joseph T. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1450-1459
[38]   Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J].
Li, H ;
Eddaoudi, M ;
O'Keeffe, M ;
Yaghi, OM .
NATURE, 1999, 402 (6759) :276-279
[39]   Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework [J].
Liang, Linfeng ;
Liu, Caiping ;
Jiang, Feilong ;
Chen, Qihui ;
Zhang, Linjie ;
Xue, Hui ;
Jiang, Hai-Long ;
Qian, Jinjie ;
Yuan, Daqiang ;
Hong, Maochun .
NATURE COMMUNICATIONS, 2017, 8
[40]   A facile surface chemistry route to a stabilized lithium metal anode [J].
Liang, Xiao ;
Pang, Quan ;
Kochetkov, Ivan R. ;
Sempere, Marina Safont ;
Huang, He ;
Sun, Xiaoqi ;
Nazar, Linda F. .
NATURE ENERGY, 2017, 2 (09)