Robust output tracking of transverse flux machines using RBF neural network

被引:0
作者
Karimi, HR [1 ]
Babazadeh, A [1 ]
Parspour, N [1 ]
机构
[1] Univ Teheran, Fac Engn, Dept Elect & Comp Engn, Tehran, Iran
来源
2004 IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS, VOLS 1 AND 2 | 2004年
关键词
RBF network; output tracking; robust control; transverse flux machine;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an application of Radial Basis Function (RBF) in identification and control design of Transverse Flux Machines as nonlinear systems with unknown nonlinearity part. The 'technique of feedback linearization and H-infinity control are used to design an adaptive control law for compensating the unknown nonlinearity part, such the effect of cogging torque as a disturbance will be decreased onto the angle and angular velocity tracking performances.
引用
收藏
页码:496 / 501
页数:6
相关论文
共 50 条
[11]   Neural network based robust controller for trajectory tracking of underwater vehicles [J].
Luo Wei-lin ;
Zou Zao-jian .
CHINA OCEAN ENGINEERING, 2007, 21 (02) :281-292
[12]   Neural Network Based Robust Controller for Trajectory Tracking of Underwater Vehicles [J].
罗伟林 ;
邹早建 .
China Ocean Engineering, 2007, (02) :281-292
[13]   Tracking control of robot manipulator based on robust neural network control [J].
Wang, Sanxiu ;
Yang, Guangying .
ADVANCED DESIGN TECHNOLOGY, PTS 1-3, 2011, 308-310 :1238-1241
[14]   Research on Adaptive Sliding Mode Robust Control Algorithm of Manipulator Based on RBF Neural Network [J].
Tian, Hua ;
Liang, Yanbing .
2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, :4625-4629
[15]   Adaptive trajectory tracking neural network control with robust compensator for robot manipulators [J].
Pham Van Cuong ;
Wang Yao Nan .
Neural Computing and Applications, 2016, 27 :525-536
[16]   Adaptive trajectory tracking neural network control with robust compensator for robot manipulators [J].
Van Cuong, Pham ;
Nan, Wang Yao .
NEURAL COMPUTING & APPLICATIONS, 2016, 27 (02) :525-536
[17]   An Adaptive Robust Position Control for Induction Machines using a Sliding Mode Flux Observer [J].
Barambones, Oscar .
2013 9TH IEEE INTERNATIONAL SYMPOSIUM ON DIAGNOSTICS FOR ELECTRIC MACHINES, POWER ELECTRONICS AND DRIVES (SDEMPED), 2013, :439-446
[18]   Prediction of Hydrocarbon Reservoir Parameter Using a GA-RBF Neural Network [J].
Chen, Jing ;
Li, Zhenhua ;
Zhao, Dan .
COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS, 2009, 51 :379-386
[19]   Robust tracking control of rigid robotic manipulators based on fuzzy neural network compensator [J].
Lin, Lei ;
Wang, Hong-Rui .
PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, :550-555
[20]   Robust Neural Network Motion Tracking Control of Piezoelectric Actuation Systems for Micro/Nanomanipulation [J].
Liaw, Hwee Choo ;
Shirinzadeh, Bijan ;
Smith, Julian .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (02) :356-367