Approximation of parabolic PDEs on spheres using spherical basis functions

被引:33
作者
Le Gia, QT [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
heat equation; radial basis functions; collocation method; spheres;
D O I
10.1007/s10444-003-3960-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the approximation of a class of parabolic partial differential equations on the unit spheres S-n subset of Rn+1 using spherical basis functions. Error estimates in the Sobolev norm are derived.
引用
收藏
页码:377 / 397
页数:21
相关论文
共 24 条
[1]  
[Anonymous], 2018, FUNDAMENTALS DIFFERE
[2]  
[Anonymous], MANUSCR GEOD
[3]  
[Anonymous], 1998, CONSTR APPROX
[4]   Equidistribution on the sphere [J].
Cui, JJ ;
Freeden, W .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (02) :595-609
[5]  
GOTTELMANN J, SPLINE COLLOCATION S
[6]  
HUBBERT S, L RHO ERROR ESTIMATE
[7]   Error estimates for scattered data interpolation on spheres [J].
Jetter, K ;
Stöckler, J ;
Ward, JD .
MATHEMATICS OF COMPUTATION, 1999, 68 (226) :733-747
[8]   Norm estimates of interpolation matrices and their inverses associated with strictly positive definite functions [J].
Levesley, J ;
Luo, Z ;
Sun, X .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (07) :2127-2134
[9]  
Lions J., 1972, Die Grundlehren der mathematischen Wissenschaften, V181
[10]  
Magnus W., 1966, FORMULAS THEOREMS SP, V52