Symbolic dynamical unfolding of spike-adding bifurcations in chaotic neuron models

被引:11
作者
Barrio, R. [1 ,2 ,3 ,4 ]
Lefranc, M. [5 ,6 ]
Martinez, M. A. [3 ,4 ]
Serrano, S. [1 ,2 ,3 ,4 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, CODY, E-50009 Zaragoza, Spain
[4] Univ Zaragoza, GME, E-50009 Zaragoza, Spain
[5] CNRS, UMR8523, Lab Phys Lasers Atomes & Mol, F-59655 Villeneuve Dascq, France
[6] Univ Sci & Technol, F-59655 Villeneuve Dascq, France
关键词
TOPOLOGICAL ANALYSIS; TEMPLATE ANALYSIS; PERIODIC-ORBITS; ATTRACTORS; ENCODINGS; EQUATIONS; LASER;
D O I
10.1209/0295-5075/109/20002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We characterize the systematic changes in the topological structure of chaotic attractors that occur as spike-adding and homoclinic bifurcations are encountered in the slow-fast dynamics of neuron models. This phenomenon is detailed in the simple Hindmarsh-Rose neuron model, where we show that the unstable periodic orbits appearing after each spike-adding bifurcation are associated with specific symbolic sequences in the canonical symbolic encoding of the dynamics of the system. This allows us to understand how these bifurcations modify the internal structure of the chaotic attractors. Copyright (C) EPLA, 2015
引用
收藏
页数:6
相关论文
共 31 条
[1]  
[Anonymous], 2011, The topology of chaos
[2]  
Arai Z., 2013, NONLINEAR THEORY ITS, V1, P104
[3]   Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons [J].
Barrio, Roberto ;
Angeles Martinez, M. ;
Serrano, Sergio ;
Shilnikov, Andrey .
CHAOS, 2014, 24 (02)
[4]   Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh-Rose model [J].
Barrio, Roberto ;
Shilnikov, Andrey .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2011, 1
[5]   Topological Changes in Periodicity Hubs of Dissipative Systems [J].
Barrio, Roberto ;
Blesa, Fernando ;
Serrano, Sergio .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[6]   Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci [J].
Barrio, Roberto ;
Blesa, Fernando ;
Serrano, Sergio ;
Shilnikov, Andrey .
PHYSICAL REVIEW E, 2011, 84 (03)
[7]   Qualitative analysis of the Rossler equations: Bifurcations of limit cycles and chaotic attractors [J].
Barrio, Roberto ;
Blesa, Fernando ;
Serrano, Sergio .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (13) :1087-1100
[8]   A nonhorseshoe template in a chaotic laser model [J].
Boulant, G ;
Lefranc, M ;
Bielawski, S ;
Derozier, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (05) :965-975
[9]  
Broens M., 1991, J PHYS CHEM-US, V95, P8706, DOI DOI 10.1021/J100175A053
[10]   Origin of bursting through homoclinic spike adding in a neuron model [J].
Channell, Paul ;
Cymbalyuk, Gennady ;
Shilnikov, Andrey .
PHYSICAL REVIEW LETTERS, 2007, 98 (13)