An Integrated Quadratic Reconstruction for Finite Volume Schemes to Scalar Conservation Laws in Multiple Dimensions

被引:2
作者
Chen, Li [1 ]
Li, Ruo [1 ,2 ,3 ]
Yang, Feng [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[2] Peking Univ, HEDPS, Beijing, Peoples R China
[3] Peking Univ, CAPT, LMAM, Beijing, Peoples R China
来源
CSIAM TRANSACTIONS ON APPLIED MATHEMATICS | 2020年 / 1卷 / 03期
基金
中国国家自然科学基金;
关键词
Quadratic reconstruction; finite volume method; local maximum principle; scalar conservation law; unstructured mesh; ESSENTIALLY NONOSCILLATORY SCHEMES; LINEAR RECONSTRUCTION; UNSTRUCTURED MESHES; ADAPTIVE STENCILS; SLOPE LIMITERS;
D O I
10.4208/csiam-am.2020-0017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We proposed a piecewise quadratic reconstruction method in multiple dimensions, which is in an integrated style, for finite volume schemes to scalar conservation laws. This integrated quadratic reconstruction is parameter-free and applicable on flexible grids. We show that the finite volume schemes with the new reconstruction satisfy a local maximum principle with properly setup on time steplength. Numerical examples are presented to show that the proposed scheme attains a third-order accuracy for smooth solutions in both 2D and 3D cases. It is indicated by numerical results that the local maximum principle is helpful to prevent overshoots in numerical solutions.
引用
收藏
页码:491 / 517
页数:27
相关论文
共 41 条
  • [1] Barth T., 1989, P 27 AER SCI M
  • [2] Barth Timothy, 1990, 28 AER SCI M
  • [3] BARTH TJ, 1993, 930668 AIAA
  • [4] Batten P, 1996, INT J NUMER METH ENG, V39, P1821, DOI 10.1002/(SICI)1097-0207(19960615)39:11<1821::AID-NME929>3.0.CO
  • [5] 2-E
  • [6] Integrated Linear Reconstruction for Finite Volume Scheme on Arbitrary Unstructured Grids
    Chen, Li
    Hu, Guanghui
    Li, Ruo
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (02) : 454 - 480
  • [7] Chen L, 2016, J SCI COMPUT, V68, P1172, DOI 10.1007/s10915-016-0173-1
  • [8] High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes
    Christlieb, Andrew J.
    Liu, Yuan
    Tang, Qi
    Xu, Zhengfu
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 334 - 351
  • [9] New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws
    Christov, Ivan
    Popov, Bojan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (11) : 5736 - 5757
  • [10] Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems
    Dumbser, Michael
    Kaeser, Martin
    Titarev, Vladimir A.
    Toro, Eleuterio F.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) : 204 - 243