Radiation therapy-induced remodeling of the tumor immune microenvironment

被引:74
作者
Charpentier, Maud [1 ]
Spada, Sheila [1 ]
Van Nest, Samantha J. [1 ]
Demaria, Sandra [1 ,2 ,3 ]
机构
[1] Weill Cornell Med, Dept Radiat Oncol, New York, NY 10065 USA
[2] Weill Cornell Med, Dept Pathol & Lab Med, New York, NY 10065 USA
[3] 1300 York Ave,Rm E 215D,Box 169, New York, NY 10065 USA
关键词
Extracellular vesicles; Immune contexture; Immunomodulation; Immunotherapy; Radiation therapy; T cell infiltration; Tumor immune microenvironment; Viral mimicry response; STEREOTACTIC BODY RADIOTHERAPY; GROWTH-FACTOR-BETA; DENDRITIC CELLS; I INTERFERON; EXTRACELLULAR VESICLES; IONIZING-RADIATION; CTLA-4; BLOCKADE; STING PATHWAY; CANCER-CELL; INFILTRATION;
D O I
10.1016/j.semcancer.2022.04.003
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The tumor immune microenvironment is a determinant of response to cancer immunotherapy and, in many cases, is prognostic for patient survival independently of the type of treatment. Radiation therapy is used in most cancer patients for its direct cytotoxic effects on malignant cells but there is increasing evidence that it also reprograms the tumor immune microenvironment. In this review we discuss the main mechanisms whereby the local inflammatory reaction induced by radiation can reset the cross-talk between the tumor and the immune system. The outcome reflects the balance between immunostimulatory signals that lead to increased tumor antigen presentation and effector T cell activation, and immunosuppressive signals that hinder radiation-induced tumor rejection. The emerging role of small extracellular vesicles (exosomes) in this process will be discussed. Overall, preclinical and early clinical findings support the hypothesis that radiation has the potential to generate an immune-permissive tumor microenvironment. An improved understanding of the pathways involved will enable the design of more effective combinations of radiation and immunotherapy, based on a rationale inte-gration of radiation with other interventions.
引用
收藏
页码:737 / 747
页数:11
相关论文
共 147 条
[1]   The non-targeted effects of radiation are perpetuated by exosomes [J].
Al-Mayah, Ammar ;
Bright, Scott ;
Chapman, Kim ;
Irons, Sarah ;
Luo, Ping ;
Carter, David ;
Goodwin, Edwin ;
Kadhim, Munira .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2015, 772 :38-45
[2]   The adenosine pathway in immuno-oncology [J].
Allard, Bertrand ;
Allard, David ;
Buisseret, Laurence ;
Stagg, John .
NATURE REVIEWS CLINICAL ONCOLOGY, 2020, 17 (10) :611-629
[3]   Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial [J].
Altorki, Nasser K. ;
McGraw, Timothy E. ;
Borczuk, Alain C. ;
Saxena, Ashish ;
Port, Jeffrey L. ;
Stiles, Brendon M. ;
Lee, Benjamin E. ;
Sanfilippo, Nicholas J. ;
Scheff, Ronald J. ;
Pua, Bradley B. ;
Gruden, James F. ;
Christos, Paul J. ;
Spinelli, Cathy ;
Gakuria, Joyce ;
Uppal, Manik ;
Binder, Bhavneet ;
Elemento, Olivier ;
Ballman, Karla, V ;
Formenti, Silvia C. .
LANCET ONCOLOGY, 2021, 22 (06) :824-835
[4]   Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy [J].
Apetoh, Lionel ;
Ghiringhelli, Francois ;
Tesniere, Antoine ;
Obeid, Michel ;
Ortiz, Carla ;
Criollo, Alfredo ;
Mignot, Gregoire ;
Maiuri, M. Chiara ;
Ullrich, Evelyn ;
Saulnier, Patrick ;
Yang, Huan ;
Amigorena, Sebastian ;
Ryffel, Bernard ;
Barrat, Franck J. ;
Saftig, Paul ;
Levi, Francis ;
Lidereau, Rosette ;
Nogues, Catherine ;
Mira, Jean-Paul ;
Chompret, Agnes ;
Joulin, Virginie ;
Clavel-Chapelon, Francoise ;
Bourhis, Jean ;
Andre, Fabrice ;
Delaloge, Suzette ;
Tursz, Thomas ;
Kroemer, Guido ;
Zitvogel, Laurence .
NATURE MEDICINE, 2007, 13 (09) :1050-1059
[5]   Ionizing Radiation and Glioblastoma Exosomes: Implications in Tumor Biology and Cell Migration [J].
Arscott, W. Tris ;
Tandle, Anita T. ;
Zhao, Shuping ;
Shabason, Jacob E. ;
Gordon, Ira K. ;
Schlaff, Cody D. ;
Zhang, Guofeng ;
Tofilon, Philip J. ;
Camphausen, Kevin A. .
TRANSLATIONAL ONCOLOGY, 2013, 6 (06) :638-U254
[6]   IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade [J].
Ayers, Mark ;
Lunceford, Jared ;
Nebozhyn, Michael ;
Murphy, Erin ;
Loboda, Andrey ;
Kaufman, David R. ;
Albright, Andrew ;
Cheng, Jonathan D. ;
Kang, S. Peter ;
Shankaran, Veena ;
Piha-Paul, Sarina A. ;
Yearley, Jennifer ;
Seiwert, Tanguy Y. ;
Ribas, Antoni ;
McClanahan, Terrill K. .
JOURNAL OF CLINICAL INVESTIGATION, 2017, 127 (08) :2930-2940
[7]   High Plus Low Dose Radiation Strategy in Combination with TIGIT and PD1 Blockade to Promote Systemic Antitumor Responses [J].
Barsoumian, Hampartsoum B. ;
Sezen, Duygu ;
Menon, Hari ;
Younes, Ahmed I. ;
Hu, Yun ;
He, Kewen ;
Puebla-Osorio, Nahum ;
Wasley, Mark ;
Hsu, Ethan ;
Patel, Roshal R. ;
Yang, Liangpeng ;
Cortez, Maria A. ;
Welsh, James W. .
CANCERS, 2022, 14 (01)
[8]   Ionizing Radiation Curtails Immunosuppressive Effects From Cancer-Associated Fibroblasts on Dendritic Cells [J].
Berzaghi, Rodrigo ;
Tornaas, Stian ;
Lode, Kristin ;
Hellevik, Turid ;
Martinez-Zubiaurre, Inigo .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[9]   Secretion rates and protein composition of extracellular vesicles released by cancer-associated fibroblasts after radiation [J].
Berzaghi, Rodrigo ;
Islam, Ashraful ;
Hellevik, Turid ;
Martinez-Zubiaurre, Inigo .
JOURNAL OF RADIATION RESEARCH, 2021, 62 (03) :401-413
[10]   RAD51 interconnects between DNA replication, DNA repair and immunity [J].
Bhattacharya, Souparno ;
Srinivasan, Kalayarasan ;
Abdisalaam, Salim ;
Su, Fengtao ;
Raj, Prithvi ;
Dozmorov, Igor ;
Mishra, Ritu ;
Wakeland, Edward K. ;
Ghose, Subroto ;
Mukherjee, Shibani ;
Asaithamby, Aroumougame .
NUCLEIC ACIDS RESEARCH, 2017, 45 (08) :4590-4605