Comments on 'Less conservative conditions for robust LQR-state-derivative controller design: an LMI approach' and new sufficient LMI conditions for invertibility of a convex combination of matrices

被引:3
作者
Galvao, Roberto Kawakami Harrop [1 ]
Teixeira, Marcelo Carvalho Minhoto [2 ]
Szulc, Tomasz [3 ]
Assuncao, Edvaldo [2 ]
Beteto, Marco Antonio Leite [2 ]
机构
[1] Inst Tecnol Aeronaut ITA, Elect Engn Div, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[2] Sao Paulo State Univ UNESP, Sch Engn, Dept Elect Engn, Ilha Solteira, SP, Brazil
[3] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
关键词
Linear quadratic regulator (LQR); linear matrix inequalities (LMIs); state derivative feedback (SDF); robust control; full rank conditions of convex combinations of matrices;
D O I
10.1080/00207721.2021.2023689
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note is concerned with conditions on a set of non-singular matrices A(i) epsilon R-nxn, i = 1, 2,..., r, so that any convex combination of these matrices is also non-singular. The first part of the note points out that Theorem 2.3 in a previous paper [Beteto et al. (2021). Less conservative conditions for robust LQR-state derivative controller design: An LMI approach. International Journal of Systems Science] provides only necessary conditions, which are not sufficient in the general case. In the second part, some stability results based on Linear Matrix Inequalities (LMIs) for a class of fractional order systems are used to establish new sufficient conditions. Numerical examples are presented for illustration. The results suggest that the new LMI conditions may be less conservative compared to a test proposed in the literature on P-matrices, and also to a positive-definiteness test based on matrix cross-products.
引用
收藏
页码:1769 / 1777
页数:9
相关论文
共 12 条
[1]   Less conservative conditions for robust LQR-state-derivative controller design: an LMI approach [J].
Beteto, Marco Antonio Leite ;
Assuncao, Edvaldo ;
Teixeira, Marcelo Carvalho Minhoto ;
da Silva, Emerson Ravazzi Pires ;
Buzachero, Luiz Francisco Sanches ;
da Ponte Caun, Rodrigo .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2021, 52 (12) :2518-2537
[2]   Robust static output feedback control synthesis for linear continuous systems with polytopic uncertainties [J].
Dong, Jiuxiang ;
Yang, Guang-Hong .
AUTOMATICA, 2013, 49 (06) :1821-1829
[3]  
Elsner L., 1998, Linear Multilinear Algebra, V44, P301
[4]  
Elsner L., 1998, Linear and Multilinear Algebra, V44, P1
[5]   Pseudo-state feedback stabilization of commensurate fractional order systems [J].
Farges, Christophe ;
Moze, Mathieu ;
Sabatier, Jocelyn .
AUTOMATICA, 2010, 46 (10) :1730-1734
[6]  
Johnson C.R., 1995, Linear Multilinear Algebra, V38, P233
[7]   Convex combinations of matrices - full rank characterization [J].
Kolodziejczak, B ;
Szulc, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) :215-222
[8]  
Lofberg J, 2004, P CACSD C TAIP TAIW, DOI [DOI 10.1109/CACSD.2004.1393890, 10.1109/CACSD.2004.1393890]
[9]  
Matignon D., 1996, Symposium on Control, Optimization and Supervision. CESA '96 IMACS Multiconference. Computational Engineering in Systems Applications, P963
[10]  
Petras I., 2009, Fractional Calculus Applied Analysis, V12, P269