Coherent Visible-Light-Generation Enhancement in Silicon-Based Nanoplasmonic Waveguides via Third-Harmonic Conversion

被引:35
作者
Sederberg, S. [1 ]
Elezzabi, A. Y. [1 ]
机构
[1] Univ Alberta, Ultrafast Opt & Nanophoton Res Lab, Edmonton, AB T6G 2V4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
3RD HARMONIC-GENERATION; PLASMONIC NANOANTENNAS; NANOPARTICLES; CRYSTALLINE; DISPERSION; EMISSION; CORE;
D O I
10.1103/PhysRevLett.114.227401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report visible third-harmonic conversion at lambda = 517 nm in subwavelength silicon-based nanoplasmonic waveguides at an unprecedented conversion efficiency of 2.3 x 10(-5). This marks both the highest third-harmonic conversion efficiency in a silicon-based or nanoplasmonic structure and the smallest silicon waveguide structure demonstrated to date. The high conversion efficiency is attributed to tight electric field confinement and strong light-matter coupling arising from surface plasmon modes in the nanoplasmonic waveguide, enabling efficient nonlinear optical mixing over micrometer length scales. The nonresonant geometry of the waveguide enables the entire lambda = 1550 nm femtosecond pulse spectrum to be converted to its third harmonic, which may be easily extended to the entire visible spectrum. We envisage that third-harmonic generation in silicon-based nanoplasmonic waveguides could provide a platform for integrated, broadband visible light sources and entangled triplet photons on future hybrid electronic-silicon photonic chips.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Simultaneous generation of second and third optical harmonics on a metal grating [J].
Andreev, A. V. ;
Korneev, A. A. ;
Mukina, L. S. ;
Nazarov, M. M. ;
Prudnikov, I. R. ;
Shkurinov, A. P. .
PHYSICAL REVIEW B, 2006, 74 (23)
[2]  
Bloembergen N., 1969, Optics Communications, V1, P195, DOI 10.1016/0030-4018(69)90064-9
[3]   THIRD-HARMONIC GENERATION IN ABSORBING MEDIA OF CUBIC OR ISOTROPIC SYMMETRY [J].
BURNS, WK ;
BLOEMBERGEN, N .
PHYSICAL REVIEW B-SOLID STATE, 1971, 4 (10) :3437-+
[4]  
Butcher PN., 1990, Cambridge Studies in Modern Optics, DOI 10.1017/CBO9781139167994
[5]   Electrically Controlled Nonlinear Generation of Light with Plasmonics [J].
Cai, Wenshan ;
Vasudev, Alok P. ;
Brongersma, Mark L. .
SCIENCE, 2011, 333 (6050) :1720-1723
[6]   Visible continuous emission from a silica microphotonic device by third-harmonic generation [J].
Carmon, Tal ;
Vahala, Kerry J. .
NATURE PHYSICS, 2007, 3 (06) :430-435
[7]   Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides [J].
Corcoran, B. ;
Monat, C. ;
Grillet, C. ;
Moss, D. J. ;
Eggleton, B. J. ;
White, T. P. ;
O'Faolain, L. ;
Krauss, T. F. .
NATURE PHOTONICS, 2009, 3 (04) :206-210
[8]   Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides [J].
Dekker, R. ;
Usechak, N. ;
Forst, M. ;
Driessen, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (14) :R249-R271
[9]   Characterization of bending losses for curved plasmonic nanowire waveguides [J].
Dikken, Dirk Jan ;
Spasenovic, Marko ;
Verhagen, Ewold ;
van Oosten, Dries ;
Kuipers, L. .
OPTICS EXPRESS, 2010, 18 (15) :16112-16119
[10]   Third-order nonlinearities in silicon at telecom wavelengths [J].
Dinu, M ;
Quochi, F ;
Garcia, H .
APPLIED PHYSICS LETTERS, 2003, 82 (18) :2954-2956